Loading…

Deep Adaptation Control for Stereophonic Acoustic Echo Cancellation

We introduce a general and data-driven adaptation-control framework for stereophonic acoustic-echo cancellation. The adaptation update rule for the filters that estimate the actual echo paths is compactly expressed with the widely-linear model in the complex time domain. A single step-size parameter...

Full description

Saved in:
Bibliographic Details
Main Authors: Ivry, Amir, Cohen, Israel, Berdugo, Baruch
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Ivry, Amir
Cohen, Israel
Berdugo, Baruch
description We introduce a general and data-driven adaptation-control framework for stereophonic acoustic-echo cancellation. The adaptation update rule for the filters that estimate the actual echo paths is compactly expressed with the widely-linear model in the complex time domain. A single step-size parameter that governs the behavior of the adaptation process is optimized by minimizing the misalignment between the actual echo paths and their filtered estimate. The relation between acoustic signals and the optimal step-size is learned via a deep neural network. In test mode, the optimal step-size prediction is inferred by the network and fed to the sign-error nor-malized least mean-squares (SNLMS) adaptive filter for echo-paths tracking. Real and simulated data show advantageous performance in single and double-talk scenarios across various acoustic setups.
doi_str_mv 10.1109/WASPAA58266.2023.10248161
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10248161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10248161</ieee_id><sourcerecordid>10248161</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-376c027946a22d26ed4c5de5445e404030cfc077c651b36b3e7d4a72f6807f093</originalsourceid><addsrcrecordid>eNo1j81KxDAURqMgOI7zBi7iA7Te3Pw1y1DHURhQGMXlkElvmUptShsXvr3iz-o7m3PgY-xaQCkEuJtXv3vyXldoTImAshSAqhJGnLCVs66SGiRKi-aULYRTthAG3Tm7mOc3AI2VggWrb4lG7psw5pC7NPA6DXlKPW_TxHeZJkrjMQ1d5D6mjzl_wzoeE6_DEKnvf5xLdtaGfqbV3y7Zy936ub4vto-bh9pviw5B5UJaEwGtUyYgNmioUVE3pJXSpECBhNhGsDYaLQ7SHCTZRgWLranAtuDkkl39djsi2o9T9x6mz_3_afkF1l5Lrg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Adaptation Control for Stereophonic Acoustic Echo Cancellation</title><source>IEEE Xplore All Conference Series</source><creator>Ivry, Amir ; Cohen, Israel ; Berdugo, Baruch</creator><creatorcontrib>Ivry, Amir ; Cohen, Israel ; Berdugo, Baruch</creatorcontrib><description>We introduce a general and data-driven adaptation-control framework for stereophonic acoustic-echo cancellation. The adaptation update rule for the filters that estimate the actual echo paths is compactly expressed with the widely-linear model in the complex time domain. A single step-size parameter that governs the behavior of the adaptation process is optimized by minimizing the misalignment between the actual echo paths and their filtered estimate. The relation between acoustic signals and the optimal step-size is learned via a deep neural network. In test mode, the optimal step-size prediction is inferred by the network and fed to the sign-error nor-malized least mean-squares (SNLMS) adaptive filter for echo-paths tracking. Real and simulated data show advantageous performance in single and double-talk scenarios across various acoustic setups.</description><identifier>EISSN: 1947-1629</identifier><identifier>EISBN: 9798350323726</identifier><identifier>DOI: 10.1109/WASPAA58266.2023.10248161</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; adaptation control ; Adaptation models ; Adaptive filters ; deep learning ; Echo cancellers ; Filtering ; Real-time systems ; sign-error NLMS ; Signal processing ; Stereophonic acoustic echo cancellation ; variable step-size</subject><ispartof>2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10248161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10248161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ivry, Amir</creatorcontrib><creatorcontrib>Cohen, Israel</creatorcontrib><creatorcontrib>Berdugo, Baruch</creatorcontrib><title>Deep Adaptation Control for Stereophonic Acoustic Echo Cancellation</title><title>2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)</title><addtitle>WASPAA</addtitle><description>We introduce a general and data-driven adaptation-control framework for stereophonic acoustic-echo cancellation. The adaptation update rule for the filters that estimate the actual echo paths is compactly expressed with the widely-linear model in the complex time domain. A single step-size parameter that governs the behavior of the adaptation process is optimized by minimizing the misalignment between the actual echo paths and their filtered estimate. The relation between acoustic signals and the optimal step-size is learned via a deep neural network. In test mode, the optimal step-size prediction is inferred by the network and fed to the sign-error nor-malized least mean-squares (SNLMS) adaptive filter for echo-paths tracking. Real and simulated data show advantageous performance in single and double-talk scenarios across various acoustic setups.</description><subject>Acoustics</subject><subject>adaptation control</subject><subject>Adaptation models</subject><subject>Adaptive filters</subject><subject>deep learning</subject><subject>Echo cancellers</subject><subject>Filtering</subject><subject>Real-time systems</subject><subject>sign-error NLMS</subject><subject>Signal processing</subject><subject>Stereophonic acoustic echo cancellation</subject><subject>variable step-size</subject><issn>1947-1629</issn><isbn>9798350323726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAURqMgOI7zBi7iA7Te3Pw1y1DHURhQGMXlkElvmUptShsXvr3iz-o7m3PgY-xaQCkEuJtXv3vyXldoTImAshSAqhJGnLCVs66SGiRKi-aULYRTthAG3Tm7mOc3AI2VggWrb4lG7psw5pC7NPA6DXlKPW_TxHeZJkrjMQ1d5D6mjzl_wzoeE6_DEKnvf5xLdtaGfqbV3y7Zy936ub4vto-bh9pviw5B5UJaEwGtUyYgNmioUVE3pJXSpECBhNhGsDYaLQ7SHCTZRgWLranAtuDkkl39djsi2o9T9x6mz_3_afkF1l5Lrg</recordid><startdate>20231022</startdate><enddate>20231022</enddate><creator>Ivry, Amir</creator><creator>Cohen, Israel</creator><creator>Berdugo, Baruch</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231022</creationdate><title>Deep Adaptation Control for Stereophonic Acoustic Echo Cancellation</title><author>Ivry, Amir ; Cohen, Israel ; Berdugo, Baruch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-376c027946a22d26ed4c5de5445e404030cfc077c651b36b3e7d4a72f6807f093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>adaptation control</topic><topic>Adaptation models</topic><topic>Adaptive filters</topic><topic>deep learning</topic><topic>Echo cancellers</topic><topic>Filtering</topic><topic>Real-time systems</topic><topic>sign-error NLMS</topic><topic>Signal processing</topic><topic>Stereophonic acoustic echo cancellation</topic><topic>variable step-size</topic><toplevel>online_resources</toplevel><creatorcontrib>Ivry, Amir</creatorcontrib><creatorcontrib>Cohen, Israel</creatorcontrib><creatorcontrib>Berdugo, Baruch</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ivry, Amir</au><au>Cohen, Israel</au><au>Berdugo, Baruch</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Adaptation Control for Stereophonic Acoustic Echo Cancellation</atitle><btitle>2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)</btitle><stitle>WASPAA</stitle><date>2023-10-22</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1947-1629</eissn><eisbn>9798350323726</eisbn><abstract>We introduce a general and data-driven adaptation-control framework for stereophonic acoustic-echo cancellation. The adaptation update rule for the filters that estimate the actual echo paths is compactly expressed with the widely-linear model in the complex time domain. A single step-size parameter that governs the behavior of the adaptation process is optimized by minimizing the misalignment between the actual echo paths and their filtered estimate. The relation between acoustic signals and the optimal step-size is learned via a deep neural network. In test mode, the optimal step-size prediction is inferred by the network and fed to the sign-error nor-malized least mean-squares (SNLMS) adaptive filter for echo-paths tracking. Real and simulated data show advantageous performance in single and double-talk scenarios across various acoustic setups.</abstract><pub>IEEE</pub><doi>10.1109/WASPAA58266.2023.10248161</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1947-1629
ispartof 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023, p.1-5
issn 1947-1629
language eng
recordid cdi_ieee_primary_10248161
source IEEE Xplore All Conference Series
subjects Acoustics
adaptation control
Adaptation models
Adaptive filters
deep learning
Echo cancellers
Filtering
Real-time systems
sign-error NLMS
Signal processing
Stereophonic acoustic echo cancellation
variable step-size
title Deep Adaptation Control for Stereophonic Acoustic Echo Cancellation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Adaptation%20Control%20for%20Stereophonic%20Acoustic%20Echo%20Cancellation&rft.btitle=2023%20IEEE%20Workshop%20on%20Applications%20of%20Signal%20Processing%20to%20Audio%20and%20Acoustics%20(WASPAA)&rft.au=Ivry,%20Amir&rft.date=2023-10-22&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1947-1629&rft_id=info:doi/10.1109/WASPAA58266.2023.10248161&rft.eisbn=9798350323726&rft_dat=%3Cieee_CHZPO%3E10248161%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-376c027946a22d26ed4c5de5445e404030cfc077c651b36b3e7d4a72f6807f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10248161&rfr_iscdi=true