Loading…
Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space
Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the oper...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Spielbauer, Niklas Reichard, Daniel Bolano, Gabriele Stelzer, Annett Suppa, Michael Leske, Michael Steinbronn, Janus Rothe, Diana Roennau, Arne Dillmann, Rudiger |
description | Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available. |
doi_str_mv | 10.1109/CASE56687.2023.10260680 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10260680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10260680</ieee_id><sourcerecordid>10260680</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-fa10e02c30ec1a84b379a56212dad092aee882018d35c61497aa78db6120ad9e3</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdBsNa-geC8QOK9M81kZllDaoWUirVuy-3MjYzEpCRZqE8v_q2-w1kc-IS4RkgRwd0Ui22ZGWPzVIHSKYIyYCyciJnLndUZaAXGZadiotBgYsG6c3ExDK8ABiziRCyfu3du5C0NHOS6G2PXyoeeQ_Q_WHe9LOs6-sjtKFePhdyNsYmfsX2RFY3fcnskz5firKZm4NnfTsVuWT4Vq6Ta3N0XiyqJiG5MakJgUF4DeyQ7P-jcUWYUqkABnCJmaxWgDTrzBucuJ8ptOBhUQMGxnoqr325k5v2xj2_Uf-z_f-sv7G5MDQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</title><source>IEEE Xplore All Conference Series</source><creator>Spielbauer, Niklas ; Reichard, Daniel ; Bolano, Gabriele ; Stelzer, Annett ; Suppa, Michael ; Leske, Michael ; Steinbronn, Janus ; Rothe, Diana ; Roennau, Arne ; Dillmann, Rudiger</creator><creatorcontrib>Spielbauer, Niklas ; Reichard, Daniel ; Bolano, Gabriele ; Stelzer, Annett ; Suppa, Michael ; Leske, Michael ; Steinbronn, Janus ; Rothe, Diana ; Roennau, Arne ; Dillmann, Rudiger</creatorcontrib><description>Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9798350320695</identifier><identifier>DOI: 10.1109/CASE56687.2023.10260680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer aided software engineering ; Dynamics ; Encoding ; Interpolation ; Predictive models ; Three-dimensional displays ; Training</subject><ispartof>2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10260680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10260680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spielbauer, Niklas</creatorcontrib><creatorcontrib>Reichard, Daniel</creatorcontrib><creatorcontrib>Bolano, Gabriele</creatorcontrib><creatorcontrib>Stelzer, Annett</creatorcontrib><creatorcontrib>Suppa, Michael</creatorcontrib><creatorcontrib>Leske, Michael</creatorcontrib><creatorcontrib>Steinbronn, Janus</creatorcontrib><creatorcontrib>Rothe, Diana</creatorcontrib><creatorcontrib>Roennau, Arne</creatorcontrib><creatorcontrib>Dillmann, Rudiger</creatorcontrib><title>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</title><title>2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)</title><addtitle>CASE</addtitle><description>Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.</description><subject>Computer aided software engineering</subject><subject>Dynamics</subject><subject>Encoding</subject><subject>Interpolation</subject><subject>Predictive models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2161-8089</issn><isbn>9798350320695</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdBsNa-geC8QOK9M81kZllDaoWUirVuy-3MjYzEpCRZqE8v_q2-w1kc-IS4RkgRwd0Ui22ZGWPzVIHSKYIyYCyciJnLndUZaAXGZadiotBgYsG6c3ExDK8ABiziRCyfu3du5C0NHOS6G2PXyoeeQ_Q_WHe9LOs6-sjtKFePhdyNsYmfsX2RFY3fcnskz5firKZm4NnfTsVuWT4Vq6Ta3N0XiyqJiG5MakJgUF4DeyQ7P-jcUWYUqkABnCJmaxWgDTrzBucuJ8ptOBhUQMGxnoqr325k5v2xj2_Uf-z_f-sv7G5MDQ</recordid><startdate>20230826</startdate><enddate>20230826</enddate><creator>Spielbauer, Niklas</creator><creator>Reichard, Daniel</creator><creator>Bolano, Gabriele</creator><creator>Stelzer, Annett</creator><creator>Suppa, Michael</creator><creator>Leske, Michael</creator><creator>Steinbronn, Janus</creator><creator>Rothe, Diana</creator><creator>Roennau, Arne</creator><creator>Dillmann, Rudiger</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230826</creationdate><title>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</title><author>Spielbauer, Niklas ; Reichard, Daniel ; Bolano, Gabriele ; Stelzer, Annett ; Suppa, Michael ; Leske, Michael ; Steinbronn, Janus ; Rothe, Diana ; Roennau, Arne ; Dillmann, Rudiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-fa10e02c30ec1a84b379a56212dad092aee882018d35c61497aa78db6120ad9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer aided software engineering</topic><topic>Dynamics</topic><topic>Encoding</topic><topic>Interpolation</topic><topic>Predictive models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Spielbauer, Niklas</creatorcontrib><creatorcontrib>Reichard, Daniel</creatorcontrib><creatorcontrib>Bolano, Gabriele</creatorcontrib><creatorcontrib>Stelzer, Annett</creatorcontrib><creatorcontrib>Suppa, Michael</creatorcontrib><creatorcontrib>Leske, Michael</creatorcontrib><creatorcontrib>Steinbronn, Janus</creatorcontrib><creatorcontrib>Rothe, Diana</creatorcontrib><creatorcontrib>Roennau, Arne</creatorcontrib><creatorcontrib>Dillmann, Rudiger</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spielbauer, Niklas</au><au>Reichard, Daniel</au><au>Bolano, Gabriele</au><au>Stelzer, Annett</au><au>Suppa, Michael</au><au>Leske, Michael</au><au>Steinbronn, Janus</au><au>Rothe, Diana</au><au>Roennau, Arne</au><au>Dillmann, Rudiger</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</atitle><btitle>2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>CASE</stitle><date>2023-08-26</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2161-8089</eissn><eisbn>9798350320695</eisbn><abstract>Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.</abstract><pub>IEEE</pub><doi>10.1109/CASE56687.2023.10260680</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-8089 |
ispartof | 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 2023, p.1-6 |
issn | 2161-8089 |
language | eng |
recordid | cdi_ieee_primary_10260680 |
source | IEEE Xplore All Conference Series |
subjects | Computer aided software engineering Dynamics Encoding Interpolation Predictive models Three-dimensional displays Training |
title | Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Voxel%20Based%20Motion%20Prediction%20for%20Efficient%20HRC%20Utilizing%20Latent%20Space&rft.btitle=2023%20IEEE%2019th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Spielbauer,%20Niklas&rft.date=2023-08-26&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2161-8089&rft_id=info:doi/10.1109/CASE56687.2023.10260680&rft.eisbn=9798350320695&rft_dat=%3Cieee_CHZPO%3E10260680%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-fa10e02c30ec1a84b379a56212dad092aee882018d35c61497aa78db6120ad9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10260680&rfr_iscdi=true |