Loading…

Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space

Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the oper...

Full description

Saved in:
Bibliographic Details
Main Authors: Spielbauer, Niklas, Reichard, Daniel, Bolano, Gabriele, Stelzer, Annett, Suppa, Michael, Leske, Michael, Steinbronn, Janus, Rothe, Diana, Roennau, Arne, Dillmann, Rudiger
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Spielbauer, Niklas
Reichard, Daniel
Bolano, Gabriele
Stelzer, Annett
Suppa, Michael
Leske, Michael
Steinbronn, Janus
Rothe, Diana
Roennau, Arne
Dillmann, Rudiger
description Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.
doi_str_mv 10.1109/CASE56687.2023.10260680
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10260680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10260680</ieee_id><sourcerecordid>10260680</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-fa10e02c30ec1a84b379a56212dad092aee882018d35c61497aa78db6120ad9e3</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdBsNa-geC8QOK9M81kZllDaoWUirVuy-3MjYzEpCRZqE8v_q2-w1kc-IS4RkgRwd0Ui22ZGWPzVIHSKYIyYCyciJnLndUZaAXGZadiotBgYsG6c3ExDK8ABiziRCyfu3du5C0NHOS6G2PXyoeeQ_Q_WHe9LOs6-sjtKFePhdyNsYmfsX2RFY3fcnskz5firKZm4NnfTsVuWT4Vq6Ta3N0XiyqJiG5MakJgUF4DeyQ7P-jcUWYUqkABnCJmaxWgDTrzBucuJ8ptOBhUQMGxnoqr325k5v2xj2_Uf-z_f-sv7G5MDQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</title><source>IEEE Xplore All Conference Series</source><creator>Spielbauer, Niklas ; Reichard, Daniel ; Bolano, Gabriele ; Stelzer, Annett ; Suppa, Michael ; Leske, Michael ; Steinbronn, Janus ; Rothe, Diana ; Roennau, Arne ; Dillmann, Rudiger</creator><creatorcontrib>Spielbauer, Niklas ; Reichard, Daniel ; Bolano, Gabriele ; Stelzer, Annett ; Suppa, Michael ; Leske, Michael ; Steinbronn, Janus ; Rothe, Diana ; Roennau, Arne ; Dillmann, Rudiger</creatorcontrib><description>Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9798350320695</identifier><identifier>DOI: 10.1109/CASE56687.2023.10260680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer aided software engineering ; Dynamics ; Encoding ; Interpolation ; Predictive models ; Three-dimensional displays ; Training</subject><ispartof>2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10260680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10260680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spielbauer, Niklas</creatorcontrib><creatorcontrib>Reichard, Daniel</creatorcontrib><creatorcontrib>Bolano, Gabriele</creatorcontrib><creatorcontrib>Stelzer, Annett</creatorcontrib><creatorcontrib>Suppa, Michael</creatorcontrib><creatorcontrib>Leske, Michael</creatorcontrib><creatorcontrib>Steinbronn, Janus</creatorcontrib><creatorcontrib>Rothe, Diana</creatorcontrib><creatorcontrib>Roennau, Arne</creatorcontrib><creatorcontrib>Dillmann, Rudiger</creatorcontrib><title>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</title><title>2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)</title><addtitle>CASE</addtitle><description>Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.</description><subject>Computer aided software engineering</subject><subject>Dynamics</subject><subject>Encoding</subject><subject>Interpolation</subject><subject>Predictive models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2161-8089</issn><isbn>9798350320695</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdBsNa-geC8QOK9M81kZllDaoWUirVuy-3MjYzEpCRZqE8v_q2-w1kc-IS4RkgRwd0Ui22ZGWPzVIHSKYIyYCyciJnLndUZaAXGZadiotBgYsG6c3ExDK8ABiziRCyfu3du5C0NHOS6G2PXyoeeQ_Q_WHe9LOs6-sjtKFePhdyNsYmfsX2RFY3fcnskz5firKZm4NnfTsVuWT4Vq6Ta3N0XiyqJiG5MakJgUF4DeyQ7P-jcUWYUqkABnCJmaxWgDTrzBucuJ8ptOBhUQMGxnoqr325k5v2xj2_Uf-z_f-sv7G5MDQ</recordid><startdate>20230826</startdate><enddate>20230826</enddate><creator>Spielbauer, Niklas</creator><creator>Reichard, Daniel</creator><creator>Bolano, Gabriele</creator><creator>Stelzer, Annett</creator><creator>Suppa, Michael</creator><creator>Leske, Michael</creator><creator>Steinbronn, Janus</creator><creator>Rothe, Diana</creator><creator>Roennau, Arne</creator><creator>Dillmann, Rudiger</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230826</creationdate><title>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</title><author>Spielbauer, Niklas ; Reichard, Daniel ; Bolano, Gabriele ; Stelzer, Annett ; Suppa, Michael ; Leske, Michael ; Steinbronn, Janus ; Rothe, Diana ; Roennau, Arne ; Dillmann, Rudiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-fa10e02c30ec1a84b379a56212dad092aee882018d35c61497aa78db6120ad9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer aided software engineering</topic><topic>Dynamics</topic><topic>Encoding</topic><topic>Interpolation</topic><topic>Predictive models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Spielbauer, Niklas</creatorcontrib><creatorcontrib>Reichard, Daniel</creatorcontrib><creatorcontrib>Bolano, Gabriele</creatorcontrib><creatorcontrib>Stelzer, Annett</creatorcontrib><creatorcontrib>Suppa, Michael</creatorcontrib><creatorcontrib>Leske, Michael</creatorcontrib><creatorcontrib>Steinbronn, Janus</creatorcontrib><creatorcontrib>Rothe, Diana</creatorcontrib><creatorcontrib>Roennau, Arne</creatorcontrib><creatorcontrib>Dillmann, Rudiger</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spielbauer, Niklas</au><au>Reichard, Daniel</au><au>Bolano, Gabriele</au><au>Stelzer, Annett</au><au>Suppa, Michael</au><au>Leske, Michael</au><au>Steinbronn, Janus</au><au>Rothe, Diana</au><au>Roennau, Arne</au><au>Dillmann, Rudiger</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space</atitle><btitle>2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>CASE</stitle><date>2023-08-26</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2161-8089</eissn><eisbn>9798350320695</eisbn><abstract>Safe human-robot-collaboration requires the robot not to pose a risk to the operator in the shared workspace. To avoid collisions different approaches such as sekleton-model based motion predictions of the human operator have been explored. Those approaches limit themselves to the motion of the operator and neglect other dynamic or movable objects in the workspace. We propose an approach that utilizes a purely voxel based prediction of motion in an arbitrary workspace without the use of models to predict any type of motion. This is done by encoding the voxelized 3D space as a latent vector and predict future occupation of the workspace by predicting possible future latent vectors. To archive this a combination of a Variational Autoencoder (VAE) and a GRU based prediction network is utilized. Through the nature of the used latent vectors it is possible to remove noise and complete hidden voxels from the input data and allow interpolation between similar voxel configurations. Interpolation is key to enable a meaningful decoding of prediced latent vectors back into the voxel domain. The VAE and GRU training are evaluated on two complex workspaces without prior knowledge. With our approach we can reconstruct complex environments without the need of any models with high accuracy and can predict human and object motion. As a second contribution the extensive workspace data sets will be made publicly available.</abstract><pub>IEEE</pub><doi>10.1109/CASE56687.2023.10260680</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-8089
ispartof 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 2023, p.1-6
issn 2161-8089
language eng
recordid cdi_ieee_primary_10260680
source IEEE Xplore All Conference Series
subjects Computer aided software engineering
Dynamics
Encoding
Interpolation
Predictive models
Three-dimensional displays
Training
title Voxel Based Motion Prediction for Efficient HRC Utilizing Latent Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Voxel%20Based%20Motion%20Prediction%20for%20Efficient%20HRC%20Utilizing%20Latent%20Space&rft.btitle=2023%20IEEE%2019th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Spielbauer,%20Niklas&rft.date=2023-08-26&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2161-8089&rft_id=info:doi/10.1109/CASE56687.2023.10260680&rft.eisbn=9798350320695&rft_dat=%3Cieee_CHZPO%3E10260680%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-fa10e02c30ec1a84b379a56212dad092aee882018d35c61497aa78db6120ad9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10260680&rfr_iscdi=true