Loading…
DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference
Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training pha...
Saved in:
Published in: | IEEE embedded systems letters 2023-12, Vol.15 (4), p.222-225 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263 |
container_end_page | 225 |
container_issue | 4 |
container_start_page | 222 |
container_title | IEEE embedded systems letters |
container_volume | 15 |
creator | Alikhani, Hamidreza Kanduri, Anil Liljeberg, Pasi Rahmani, Amir M. Dutt, Nikil |
description | Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches. |
doi_str_mv | 10.1109/LES.2023.3298738 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10261977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261977</ieee_id><sourcerecordid>2895007424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvHjwEPLfmY_PlTWqrhS2C2vOSTSea0mZrsnvof--WFnEu8wbemxl-CN1SMqGUmIdy9jFhhPEJZ0Yrri_QgJqCj4lU9PJPS36NRjlvSF-iUIKLAVo9H6Kddxke8VHtgsP9FJqIfZPwO-SmSw7wzPvgAsQWL7ttG3bN2m7x0rrvEAGXYFMM8QsvoocE0cENuvJ2m2F07kO0ms8-p6_j8u1lMX0qx47zoh1rJ4VTtZaeas-EqnmtNRVUGU9qQ42ljK-FNKyW1ilZg6yt8UC1KKgDJvkQ3Z_27lPz00Fuq03_b-xPVkwbQYgqWNG7yMnlUpNzAl_tU9jZdKgoqY78qp5fdeRXnfn1kbtTJADAPzuT1CjFfwF8OGrn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895007424</pqid></control><display><type>article</type><title>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alikhani, Hamidreza ; Kanduri, Anil ; Liljeberg, Pasi ; Rahmani, Amir M. ; Dutt, Nikil</creator><creatorcontrib>Alikhani, Hamidreza ; Kanduri, Anil ; Liljeberg, Pasi ; Rahmani, Amir M. ; Dutt, Nikil</creatorcontrib><description>Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.</description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2023.3298738</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Computational modeling ; Data models ; Energy budget ; Energy consumption ; Energy efficiency ; Energy sources ; Human activity recognition ; Inference ; Machine learning ; Monitoring ; multimodal machine learning (MMML) ; Predictive models ; run-time systems ; Stress</subject><ispartof>IEEE embedded systems letters, 2023-12, Vol.15 (4), p.222-225</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</citedby><cites>FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</cites><orcidid>0000-0003-0725-1155 ; 0000-0003-3188-8703 ; 0000-0002-0983-1260 ; 0000-0002-9392-3589 ; 0000-0002-3060-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261977$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Alikhani, Hamidreza</creatorcontrib><creatorcontrib>Kanduri, Anil</creatorcontrib><creatorcontrib>Liljeberg, Pasi</creatorcontrib><creatorcontrib>Rahmani, Amir M.</creatorcontrib><creatorcontrib>Dutt, Nikil</creatorcontrib><title>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.</description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Energy budget</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy sources</subject><subject>Human activity recognition</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>multimodal machine learning (MMML)</subject><subject>Predictive models</subject><subject>run-time systems</subject><subject>Stress</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvHjwEPLfmY_PlTWqrhS2C2vOSTSea0mZrsnvof--WFnEu8wbemxl-CN1SMqGUmIdy9jFhhPEJZ0Yrri_QgJqCj4lU9PJPS36NRjlvSF-iUIKLAVo9H6Kddxke8VHtgsP9FJqIfZPwO-SmSw7wzPvgAsQWL7ttG3bN2m7x0rrvEAGXYFMM8QsvoocE0cENuvJ2m2F07kO0ms8-p6_j8u1lMX0qx47zoh1rJ4VTtZaeas-EqnmtNRVUGU9qQ42ljK-FNKyW1ilZg6yt8UC1KKgDJvkQ3Z_27lPz00Fuq03_b-xPVkwbQYgqWNG7yMnlUpNzAl_tU9jZdKgoqY78qp5fdeRXnfn1kbtTJADAPzuT1CjFfwF8OGrn</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Alikhani, Hamidreza</creator><creator>Kanduri, Anil</creator><creator>Liljeberg, Pasi</creator><creator>Rahmani, Amir M.</creator><creator>Dutt, Nikil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0725-1155</orcidid><orcidid>https://orcid.org/0000-0003-3188-8703</orcidid><orcidid>https://orcid.org/0000-0002-0983-1260</orcidid><orcidid>https://orcid.org/0000-0002-9392-3589</orcidid><orcidid>https://orcid.org/0000-0002-3060-8119</orcidid></search><sort><creationdate>202312</creationdate><title>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</title><author>Alikhani, Hamidreza ; Kanduri, Anil ; Liljeberg, Pasi ; Rahmani, Amir M. ; Dutt, Nikil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Energy budget</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy sources</topic><topic>Human activity recognition</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>multimodal machine learning (MMML)</topic><topic>Predictive models</topic><topic>run-time systems</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alikhani, Hamidreza</creatorcontrib><creatorcontrib>Kanduri, Anil</creatorcontrib><creatorcontrib>Liljeberg, Pasi</creatorcontrib><creatorcontrib>Rahmani, Amir M.</creatorcontrib><creatorcontrib>Dutt, Nikil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alikhani, Hamidreza</au><au>Kanduri, Anil</au><au>Liljeberg, Pasi</au><au>Rahmani, Amir M.</au><au>Dutt, Nikil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2023-12</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>222</spage><epage>225</epage><pages>222-225</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract>Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LES.2023.3298738</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0725-1155</orcidid><orcidid>https://orcid.org/0000-0003-3188-8703</orcidid><orcidid>https://orcid.org/0000-0002-0983-1260</orcidid><orcidid>https://orcid.org/0000-0002-9392-3589</orcidid><orcidid>https://orcid.org/0000-0002-3060-8119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0663 |
ispartof | IEEE embedded systems letters, 2023-12, Vol.15 (4), p.222-225 |
issn | 1943-0663 1943-0671 |
language | eng |
recordid | cdi_ieee_primary_10261977 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Computational modeling Data models Energy budget Energy consumption Energy efficiency Energy sources Human activity recognition Inference Machine learning Monitoring multimodal machine learning (MMML) Predictive models run-time systems Stress |
title | DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DynaFuse:%20Dynamic%20Fusion%20for%20Resource%20Efficient%20Multimodal%20Machine%20Learning%20Inference&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Alikhani,%20Hamidreza&rft.date=2023-12&rft.volume=15&rft.issue=4&rft.spage=222&rft.epage=225&rft.pages=222-225&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2023.3298738&rft_dat=%3Cproquest_ieee_%3E2895007424%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895007424&rft_id=info:pmid/&rft_ieee_id=10261977&rfr_iscdi=true |