Loading…

DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference

Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training pha...

Full description

Saved in:
Bibliographic Details
Published in:IEEE embedded systems letters 2023-12, Vol.15 (4), p.222-225
Main Authors: Alikhani, Hamidreza, Kanduri, Anil, Liljeberg, Pasi, Rahmani, Amir M., Dutt, Nikil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263
cites cdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263
container_end_page 225
container_issue 4
container_start_page 222
container_title IEEE embedded systems letters
container_volume 15
creator Alikhani, Hamidreza
Kanduri, Anil
Liljeberg, Pasi
Rahmani, Amir M.
Dutt, Nikil
description Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.
doi_str_mv 10.1109/LES.2023.3298738
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10261977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261977</ieee_id><sourcerecordid>2895007424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvHjwEPLfmY_PlTWqrhS2C2vOSTSea0mZrsnvof--WFnEu8wbemxl-CN1SMqGUmIdy9jFhhPEJZ0Yrri_QgJqCj4lU9PJPS36NRjlvSF-iUIKLAVo9H6Kddxke8VHtgsP9FJqIfZPwO-SmSw7wzPvgAsQWL7ttG3bN2m7x0rrvEAGXYFMM8QsvoocE0cENuvJ2m2F07kO0ms8-p6_j8u1lMX0qx47zoh1rJ4VTtZaeas-EqnmtNRVUGU9qQ42ljK-FNKyW1ilZg6yt8UC1KKgDJvkQ3Z_27lPz00Fuq03_b-xPVkwbQYgqWNG7yMnlUpNzAl_tU9jZdKgoqY78qp5fdeRXnfn1kbtTJADAPzuT1CjFfwF8OGrn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895007424</pqid></control><display><type>article</type><title>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alikhani, Hamidreza ; Kanduri, Anil ; Liljeberg, Pasi ; Rahmani, Amir M. ; Dutt, Nikil</creator><creatorcontrib>Alikhani, Hamidreza ; Kanduri, Anil ; Liljeberg, Pasi ; Rahmani, Amir M. ; Dutt, Nikil</creatorcontrib><description>Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.</description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2023.3298738</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Computational modeling ; Data models ; Energy budget ; Energy consumption ; Energy efficiency ; Energy sources ; Human activity recognition ; Inference ; Machine learning ; Monitoring ; multimodal machine learning (MMML) ; Predictive models ; run-time systems ; Stress</subject><ispartof>IEEE embedded systems letters, 2023-12, Vol.15 (4), p.222-225</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</citedby><cites>FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</cites><orcidid>0000-0003-0725-1155 ; 0000-0003-3188-8703 ; 0000-0002-0983-1260 ; 0000-0002-9392-3589 ; 0000-0002-3060-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261977$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Alikhani, Hamidreza</creatorcontrib><creatorcontrib>Kanduri, Anil</creatorcontrib><creatorcontrib>Liljeberg, Pasi</creatorcontrib><creatorcontrib>Rahmani, Amir M.</creatorcontrib><creatorcontrib>Dutt, Nikil</creatorcontrib><title>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.</description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Energy budget</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy sources</subject><subject>Human activity recognition</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>multimodal machine learning (MMML)</subject><subject>Predictive models</subject><subject>run-time systems</subject><subject>Stress</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvHjwEPLfmY_PlTWqrhS2C2vOSTSea0mZrsnvof--WFnEu8wbemxl-CN1SMqGUmIdy9jFhhPEJZ0Yrri_QgJqCj4lU9PJPS36NRjlvSF-iUIKLAVo9H6Kddxke8VHtgsP9FJqIfZPwO-SmSw7wzPvgAsQWL7ttG3bN2m7x0rrvEAGXYFMM8QsvoocE0cENuvJ2m2F07kO0ms8-p6_j8u1lMX0qx47zoh1rJ4VTtZaeas-EqnmtNRVUGU9qQ42ljK-FNKyW1ilZg6yt8UC1KKgDJvkQ3Z_27lPz00Fuq03_b-xPVkwbQYgqWNG7yMnlUpNzAl_tU9jZdKgoqY78qp5fdeRXnfn1kbtTJADAPzuT1CjFfwF8OGrn</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Alikhani, Hamidreza</creator><creator>Kanduri, Anil</creator><creator>Liljeberg, Pasi</creator><creator>Rahmani, Amir M.</creator><creator>Dutt, Nikil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0725-1155</orcidid><orcidid>https://orcid.org/0000-0003-3188-8703</orcidid><orcidid>https://orcid.org/0000-0002-0983-1260</orcidid><orcidid>https://orcid.org/0000-0002-9392-3589</orcidid><orcidid>https://orcid.org/0000-0002-3060-8119</orcidid></search><sort><creationdate>202312</creationdate><title>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</title><author>Alikhani, Hamidreza ; Kanduri, Anil ; Liljeberg, Pasi ; Rahmani, Amir M. ; Dutt, Nikil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Energy budget</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy sources</topic><topic>Human activity recognition</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>multimodal machine learning (MMML)</topic><topic>Predictive models</topic><topic>run-time systems</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alikhani, Hamidreza</creatorcontrib><creatorcontrib>Kanduri, Anil</creatorcontrib><creatorcontrib>Liljeberg, Pasi</creatorcontrib><creatorcontrib>Rahmani, Amir M.</creatorcontrib><creatorcontrib>Dutt, Nikil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alikhani, Hamidreza</au><au>Kanduri, Anil</au><au>Liljeberg, Pasi</au><au>Rahmani, Amir M.</au><au>Dutt, Nikil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2023-12</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>222</spage><epage>225</epage><pages>222-225</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract>Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LES.2023.3298738</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0725-1155</orcidid><orcidid>https://orcid.org/0000-0003-3188-8703</orcidid><orcidid>https://orcid.org/0000-0002-0983-1260</orcidid><orcidid>https://orcid.org/0000-0002-9392-3589</orcidid><orcidid>https://orcid.org/0000-0002-3060-8119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0663
ispartof IEEE embedded systems letters, 2023-12, Vol.15 (4), p.222-225
issn 1943-0663
1943-0671
language eng
recordid cdi_ieee_primary_10261977
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Computational modeling
Data models
Energy budget
Energy consumption
Energy efficiency
Energy sources
Human activity recognition
Inference
Machine learning
Monitoring
multimodal machine learning (MMML)
Predictive models
run-time systems
Stress
title DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DynaFuse:%20Dynamic%20Fusion%20for%20Resource%20Efficient%20Multimodal%20Machine%20Learning%20Inference&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Alikhani,%20Hamidreza&rft.date=2023-12&rft.volume=15&rft.issue=4&rft.spage=222&rft.epage=225&rft.pages=222-225&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2023.3298738&rft_dat=%3Cproquest_ieee_%3E2895007424%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-8c65c7b86f18f257b3b8815179f0b919a123d5692b6ac76be6ba9fe18541ce263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895007424&rft_id=info:pmid/&rft_ieee_id=10261977&rfr_iscdi=true