Loading…
Classifying Parkinson's Disease Using Resting State Electroencephalogram Signals and UEN-PDNet
Parkinson's Disease (PD) in the set of neuro-degenerative disorders stimulates due to the loss of dopaminergic neurons from the substantia nigra. Electroencephalogram (EEG) signals are being extensively utilized for diagnosing PD. The existing approaches extract the features using various frequ...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.107703-107724 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 107724 |
container_issue | |
container_start_page | 107703 |
container_title | IEEE access |
container_volume | 11 |
creator | Rizvi, Syed Qasim Afser Wang, Guojun Khan, Asif Hasan, Mohammad Kamrul Ghazal, Taher M. Khan, Atta Ur Rehman |
description | Parkinson's Disease (PD) in the set of neuro-degenerative disorders stimulates due to the loss of dopaminergic neurons from the substantia nigra. Electroencephalogram (EEG) signals are being extensively utilized for diagnosing PD. The existing approaches extract the features using various frequency transformations that lose valuable signal information. An optimized Deep Convolutional Neural Network (CNN) inspired by the encoder part of U-Net architecture is proposed for classifying PD incorporating the resting electroencephalogram (EEG) signal dataset. The proposed model follows the U-Net architecture for extracting the features from the signals. The EEG recordings are taken from two datasets: the University of Mexico (UNM) EEGs and the University of California San Diego (UCSD) resting state dataset. The EEGs are pre-processed with a basic pre-processing pipeline, then separated into single channels, plotting each channel as a simple graph. These graphs are then fed to the proposed 23-layered convolutional neural network (CNN) for classifying PD from the normal control. Consequently, the model achieved maximum values of 93.10%, 93.18%, 93.09%, and 0.9313 of accuracy, precision, recall, and F1-score respectively for the UNM dataset, whereas, 97.90%, 98%, 97.87% and 0.9794 of accuracy, precision, recall, and F1-score respectively for UCSD dataset. The results show improved scores compared to the individual Machine Learning and CNN models applied on the same datasets. |
doi_str_mv | 10.1109/ACCESS.2023.3319248 |
format | article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10262304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10262304</ieee_id><doaj_id>oai_doaj_org_article_c7a63fece4324e2bb5661cceea02b67f</doaj_id><sourcerecordid>oai_doaj_org_article_c7a63fece4324e2bb5661cceea02b67f</sourcerecordid><originalsourceid>FETCH-LOGICAL-d172t-746d7925382e7f765cd0402add7e5404ed9ff3ed6d5dc319ee3f153c9dec96f03</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdBsNT-Al1k5yp1vqdZlrRqQWoxdmt4nXkTp6ZJyWTTf29qxbu5cC4cuITcMTpljGaP8zxfFsWUUy6mQrCMy9kVGXGms1QooW_IJMY9HTIbkDIj8pnXEGPwp9BUyQa679DEtnmIySJEhIjJNp6Xd4z9uYseekyWNdq-a7GxePyCuq06OCRFqBqoYwKNS7bLdbpZrLG_Jdd-gDj56zHZPi0_8pf09e15lc9fU8cM71MjtTMZV2LG0XijlXVUUg7OGVSSSnSZ9wKddsrZ4Rai8EwJmzm0mfZUjMnq4nUt7MtjFw7QncoWQvkL2q4qoeuDrbG0BrTwaFEKLpHvdkprZi0iUL7Txg-u-4srIOK_i1GuuaBS_AAHWWyW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classifying Parkinson's Disease Using Resting State Electroencephalogram Signals and UEN-PDNet</title><source>IEEE Xplore Open Access Journals</source><creator>Rizvi, Syed Qasim Afser ; Wang, Guojun ; Khan, Asif ; Hasan, Mohammad Kamrul ; Ghazal, Taher M. ; Khan, Atta Ur Rehman</creator><creatorcontrib>Rizvi, Syed Qasim Afser ; Wang, Guojun ; Khan, Asif ; Hasan, Mohammad Kamrul ; Ghazal, Taher M. ; Khan, Atta Ur Rehman</creatorcontrib><description>Parkinson's Disease (PD) in the set of neuro-degenerative disorders stimulates due to the loss of dopaminergic neurons from the substantia nigra. Electroencephalogram (EEG) signals are being extensively utilized for diagnosing PD. The existing approaches extract the features using various frequency transformations that lose valuable signal information. An optimized Deep Convolutional Neural Network (CNN) inspired by the encoder part of U-Net architecture is proposed for classifying PD incorporating the resting electroencephalogram (EEG) signal dataset. The proposed model follows the U-Net architecture for extracting the features from the signals. The EEG recordings are taken from two datasets: the University of Mexico (UNM) EEGs and the University of California San Diego (UCSD) resting state dataset. The EEGs are pre-processed with a basic pre-processing pipeline, then separated into single channels, plotting each channel as a simple graph. These graphs are then fed to the proposed 23-layered convolutional neural network (CNN) for classifying PD from the normal control. Consequently, the model achieved maximum values of 93.10%, 93.18%, 93.09%, and 0.9313 of accuracy, precision, recall, and F1-score respectively for the UNM dataset, whereas, 97.90%, 98%, 97.87% and 0.9794 of accuracy, precision, recall, and F1-score respectively for UCSD dataset. The results show improved scores compared to the individual Machine Learning and CNN models applied on the same datasets.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3319248</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; CNN ; Computer architecture ; Convolutional neural networks ; Deep learning ; EEG ; Electroencephalography ; Feature extraction ; Neural engineering ; Neuroimaging ; Parkinson's disease</subject><ispartof>IEEE access, 2023, Vol.11, p.107703-107724</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5009-3290 ; 0000-0001-9875-4182 ; 0000-0003-0672-7924 ; 0000-0001-5511-0205 ; 0000-0003-2803-3982 ; 0000-0003-2930-6508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10262304$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Rizvi, Syed Qasim Afser</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Khan, Asif</creatorcontrib><creatorcontrib>Hasan, Mohammad Kamrul</creatorcontrib><creatorcontrib>Ghazal, Taher M.</creatorcontrib><creatorcontrib>Khan, Atta Ur Rehman</creatorcontrib><title>Classifying Parkinson's Disease Using Resting State Electroencephalogram Signals and UEN-PDNet</title><title>IEEE access</title><addtitle>Access</addtitle><description>Parkinson's Disease (PD) in the set of neuro-degenerative disorders stimulates due to the loss of dopaminergic neurons from the substantia nigra. Electroencephalogram (EEG) signals are being extensively utilized for diagnosing PD. The existing approaches extract the features using various frequency transformations that lose valuable signal information. An optimized Deep Convolutional Neural Network (CNN) inspired by the encoder part of U-Net architecture is proposed for classifying PD incorporating the resting electroencephalogram (EEG) signal dataset. The proposed model follows the U-Net architecture for extracting the features from the signals. The EEG recordings are taken from two datasets: the University of Mexico (UNM) EEGs and the University of California San Diego (UCSD) resting state dataset. The EEGs are pre-processed with a basic pre-processing pipeline, then separated into single channels, plotting each channel as a simple graph. These graphs are then fed to the proposed 23-layered convolutional neural network (CNN) for classifying PD from the normal control. Consequently, the model achieved maximum values of 93.10%, 93.18%, 93.09%, and 0.9313 of accuracy, precision, recall, and F1-score respectively for the UNM dataset, whereas, 97.90%, 98%, 97.87% and 0.9794 of accuracy, precision, recall, and F1-score respectively for UCSD dataset. The results show improved scores compared to the individual Machine Learning and CNN models applied on the same datasets.</description><subject>Brain modeling</subject><subject>CNN</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Neural engineering</subject><subject>Neuroimaging</subject><subject>Parkinson's disease</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9j01Lw0AURQdBsNT-Al1k5yp1vqdZlrRqQWoxdmt4nXkTp6ZJyWTTf29qxbu5cC4cuITcMTpljGaP8zxfFsWUUy6mQrCMy9kVGXGms1QooW_IJMY9HTIbkDIj8pnXEGPwp9BUyQa679DEtnmIySJEhIjJNp6Xd4z9uYseekyWNdq-a7GxePyCuq06OCRFqBqoYwKNS7bLdbpZrLG_Jdd-gDj56zHZPi0_8pf09e15lc9fU8cM71MjtTMZV2LG0XijlXVUUg7OGVSSSnSZ9wKddsrZ4Rai8EwJmzm0mfZUjMnq4nUt7MtjFw7QncoWQvkL2q4qoeuDrbG0BrTwaFEKLpHvdkprZi0iUL7Txg-u-4srIOK_i1GuuaBS_AAHWWyW</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rizvi, Syed Qasim Afser</creator><creator>Wang, Guojun</creator><creator>Khan, Asif</creator><creator>Hasan, Mohammad Kamrul</creator><creator>Ghazal, Taher M.</creator><creator>Khan, Atta Ur Rehman</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5009-3290</orcidid><orcidid>https://orcid.org/0000-0001-9875-4182</orcidid><orcidid>https://orcid.org/0000-0003-0672-7924</orcidid><orcidid>https://orcid.org/0000-0001-5511-0205</orcidid><orcidid>https://orcid.org/0000-0003-2803-3982</orcidid><orcidid>https://orcid.org/0000-0003-2930-6508</orcidid></search><sort><creationdate>2023</creationdate><title>Classifying Parkinson's Disease Using Resting State Electroencephalogram Signals and UEN-PDNet</title><author>Rizvi, Syed Qasim Afser ; Wang, Guojun ; Khan, Asif ; Hasan, Mohammad Kamrul ; Ghazal, Taher M. ; Khan, Atta Ur Rehman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d172t-746d7925382e7f765cd0402add7e5404ed9ff3ed6d5dc319ee3f153c9dec96f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain modeling</topic><topic>CNN</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Neural engineering</topic><topic>Neuroimaging</topic><topic>Parkinson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizvi, Syed Qasim Afser</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Khan, Asif</creatorcontrib><creatorcontrib>Hasan, Mohammad Kamrul</creatorcontrib><creatorcontrib>Ghazal, Taher M.</creatorcontrib><creatorcontrib>Khan, Atta Ur Rehman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizvi, Syed Qasim Afser</au><au>Wang, Guojun</au><au>Khan, Asif</au><au>Hasan, Mohammad Kamrul</au><au>Ghazal, Taher M.</au><au>Khan, Atta Ur Rehman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifying Parkinson's Disease Using Resting State Electroencephalogram Signals and UEN-PDNet</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>107703</spage><epage>107724</epage><pages>107703-107724</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Parkinson's Disease (PD) in the set of neuro-degenerative disorders stimulates due to the loss of dopaminergic neurons from the substantia nigra. Electroencephalogram (EEG) signals are being extensively utilized for diagnosing PD. The existing approaches extract the features using various frequency transformations that lose valuable signal information. An optimized Deep Convolutional Neural Network (CNN) inspired by the encoder part of U-Net architecture is proposed for classifying PD incorporating the resting electroencephalogram (EEG) signal dataset. The proposed model follows the U-Net architecture for extracting the features from the signals. The EEG recordings are taken from two datasets: the University of Mexico (UNM) EEGs and the University of California San Diego (UCSD) resting state dataset. The EEGs are pre-processed with a basic pre-processing pipeline, then separated into single channels, plotting each channel as a simple graph. These graphs are then fed to the proposed 23-layered convolutional neural network (CNN) for classifying PD from the normal control. Consequently, the model achieved maximum values of 93.10%, 93.18%, 93.09%, and 0.9313 of accuracy, precision, recall, and F1-score respectively for the UNM dataset, whereas, 97.90%, 98%, 97.87% and 0.9794 of accuracy, precision, recall, and F1-score respectively for UCSD dataset. The results show improved scores compared to the individual Machine Learning and CNN models applied on the same datasets.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3319248</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5009-3290</orcidid><orcidid>https://orcid.org/0000-0001-9875-4182</orcidid><orcidid>https://orcid.org/0000-0003-0672-7924</orcidid><orcidid>https://orcid.org/0000-0001-5511-0205</orcidid><orcidid>https://orcid.org/0000-0003-2803-3982</orcidid><orcidid>https://orcid.org/0000-0003-2930-6508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.107703-107724 |
issn | 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10262304 |
source | IEEE Xplore Open Access Journals |
subjects | Brain modeling CNN Computer architecture Convolutional neural networks Deep learning EEG Electroencephalography Feature extraction Neural engineering Neuroimaging Parkinson's disease |
title | Classifying Parkinson's Disease Using Resting State Electroencephalogram Signals and UEN-PDNet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifying%20Parkinson's%20Disease%20Using%20Resting%20State%20Electroencephalogram%20Signals%20and%20UEN-PDNet&rft.jtitle=IEEE%20access&rft.au=Rizvi,%20Syed%20Qasim%20Afser&rft.date=2023&rft.volume=11&rft.spage=107703&rft.epage=107724&rft.pages=107703-107724&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3319248&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_c7a63fece4324e2bb5661cceea02b67f%3C/doaj_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d172t-746d7925382e7f765cd0402add7e5404ed9ff3ed6d5dc319ee3f153c9dec96f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10262304&rfr_iscdi=true |