Loading…

PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality as a Context

Physiological signals are widely used in the recognition of affective status. Recording of such physiological signals involves elicitation of emotions through different stimuli including video-based stimulus. Considering that the same stimulus videos often induce different emotions in different indi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.107638-107656
Main Authors: Pant, Sudarshan, Yang, Hyung-Jeong, Lim, Eunchae, Kim, Soo-Hyung, Yoo, Seok-Bong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93
cites cdi_FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93
container_end_page 107656
container_issue
container_start_page 107638
container_title IEEE access
container_volume 11
creator Pant, Sudarshan
Yang, Hyung-Jeong
Lim, Eunchae
Kim, Soo-Hyung
Yoo, Seok-Bong
description Physiological signals are widely used in the recognition of affective status. Recording of such physiological signals involves elicitation of emotions through different stimuli including video-based stimulus. Considering that the same stimulus videos often induce different emotions in different individuals, emotion recognition in such a scenario requires consideration of the individual differences in the consumption of the stimulus content. With this as our goal, we present a Physiological dataset for Multimodal Emotion Recognition (PhyMER) for studying emotion through physiological response with personality as a context. The PhyMER dataset consists of electroencephalogram (EEG), electrodermal activity (EDA), blood volume pulse (BVP), and skin temperature along with the personality traits of 30 participants. We collected the video-based stimulus dataset for emotion elicitation and developed a web-based annotation tool for labeling felt emotions. We compared the stimulus labels and the self-annotation of felt emotions labeled during physiological data recording. Correlation among personalities was analyzed to study the impact of personality on the intensity of emotions in arousal and valence dimensions. Finally, we proposed a baseline model for the classification of emotions using physiological signals. The dataset is publicly available to the academic community for analysis of affective states and the development of emotion recognition models.
doi_str_mv 10.1109/ACCESS.2023.3320053
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10265252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10265252</ieee_id><doaj_id>oai_doaj_org_article_6f09dd4d5ecc472da8f228719d7ef003</doaj_id><sourcerecordid>2873584971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93</originalsourceid><addsrcrecordid>eNpNUdtKAzEUXETBon6BPgR8bk1yNrsb32StF7AoXvDNkObSpmwbTVKwf2_qivS8zGGYmcNhiuKU4BEhmF9cte345WVEMYURAMWYwV4xoKTiQ2BQ7e_sh8VJjAucp8kUqwfFx9N8Mxk_X6KM0fnOz5ySHbqWSUaTkPUBTdZdckuvMz1e-uT8Cj0b5Wcr97u_uzRHTyZEv5KdSxskI5Ko9atkvtNxcWBlF83JHx4Vbzfj1_Zu-PB4e99ePQxViXkaTnHdVJJOp6QklAPnUIO1oEpNOAFLmaaEkNoCb5hiulKyarbc1Da4pprDUXHf52ovF-IzuKUMG-GlE7-EDzMhQ3KqM6KymGtdamaUKrNZNpbSpiZc18ZiDDnrvM_6DP5rbWISC78O-bkosg5YU_KaZBX0KhV8jMHY_6sEi20vou9FbHsRf71k11nvcsaYHQetGGUUfgCAiYhJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873584971</pqid></control><display><type>article</type><title>PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality as a Context</title><source>IEEE Open Access Journals</source><creator>Pant, Sudarshan ; Yang, Hyung-Jeong ; Lim, Eunchae ; Kim, Soo-Hyung ; Yoo, Seok-Bong</creator><creatorcontrib>Pant, Sudarshan ; Yang, Hyung-Jeong ; Lim, Eunchae ; Kim, Soo-Hyung ; Yoo, Seok-Bong</creatorcontrib><description>Physiological signals are widely used in the recognition of affective status. Recording of such physiological signals involves elicitation of emotions through different stimuli including video-based stimulus. Considering that the same stimulus videos often induce different emotions in different individuals, emotion recognition in such a scenario requires consideration of the individual differences in the consumption of the stimulus content. With this as our goal, we present a Physiological dataset for Multimodal Emotion Recognition (PhyMER) for studying emotion through physiological response with personality as a context. The PhyMER dataset consists of electroencephalogram (EEG), electrodermal activity (EDA), blood volume pulse (BVP), and skin temperature along with the personality traits of 30 participants. We collected the video-based stimulus dataset for emotion elicitation and developed a web-based annotation tool for labeling felt emotions. We compared the stimulus labels and the self-annotation of felt emotions labeled during physiological data recording. Correlation among personalities was analyzed to study the impact of personality on the intensity of emotions in arousal and valence dimensions. Finally, we proposed a baseline model for the classification of emotions using physiological signals. The dataset is publicly available to the academic community for analysis of affective states and the development of emotion recognition models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3320053</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Arousal ; Blood volume ; Context ; Data recording ; Datasets ; EEG ; Electrocardiography ; Electroencephalography ; emotion classification ; Emotion recognition ; Emotions ; Labels ; Motion pictures ; Personality ; personality traits ; Physiological signals ; Physiology ; Skin temperature ; Videos</subject><ispartof>IEEE access, 2023, Vol.11, p.107638-107656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93</citedby><cites>FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93</cites><orcidid>0000-0003-3575-5035 ; 0000-0003-3339-4192 ; 0000-0003-3024-5060 ; 0000-0002-2385-9673 ; 0000-0002-6528-701X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10265252$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pant, Sudarshan</creatorcontrib><creatorcontrib>Yang, Hyung-Jeong</creatorcontrib><creatorcontrib>Lim, Eunchae</creatorcontrib><creatorcontrib>Kim, Soo-Hyung</creatorcontrib><creatorcontrib>Yoo, Seok-Bong</creatorcontrib><title>PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality as a Context</title><title>IEEE access</title><addtitle>Access</addtitle><description>Physiological signals are widely used in the recognition of affective status. Recording of such physiological signals involves elicitation of emotions through different stimuli including video-based stimulus. Considering that the same stimulus videos often induce different emotions in different individuals, emotion recognition in such a scenario requires consideration of the individual differences in the consumption of the stimulus content. With this as our goal, we present a Physiological dataset for Multimodal Emotion Recognition (PhyMER) for studying emotion through physiological response with personality as a context. The PhyMER dataset consists of electroencephalogram (EEG), electrodermal activity (EDA), blood volume pulse (BVP), and skin temperature along with the personality traits of 30 participants. We collected the video-based stimulus dataset for emotion elicitation and developed a web-based annotation tool for labeling felt emotions. We compared the stimulus labels and the self-annotation of felt emotions labeled during physiological data recording. Correlation among personalities was analyzed to study the impact of personality on the intensity of emotions in arousal and valence dimensions. Finally, we proposed a baseline model for the classification of emotions using physiological signals. The dataset is publicly available to the academic community for analysis of affective states and the development of emotion recognition models.</description><subject>Annotations</subject><subject>Arousal</subject><subject>Blood volume</subject><subject>Context</subject><subject>Data recording</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>emotion classification</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Labels</subject><subject>Motion pictures</subject><subject>Personality</subject><subject>personality traits</subject><subject>Physiological signals</subject><subject>Physiology</subject><subject>Skin temperature</subject><subject>Videos</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEUXETBon6BPgR8bk1yNrsb32StF7AoXvDNkObSpmwbTVKwf2_qivS8zGGYmcNhiuKU4BEhmF9cte345WVEMYURAMWYwV4xoKTiQ2BQ7e_sh8VJjAucp8kUqwfFx9N8Mxk_X6KM0fnOz5ySHbqWSUaTkPUBTdZdckuvMz1e-uT8Cj0b5Wcr97u_uzRHTyZEv5KdSxskI5Ko9atkvtNxcWBlF83JHx4Vbzfj1_Zu-PB4e99ePQxViXkaTnHdVJJOp6QklAPnUIO1oEpNOAFLmaaEkNoCb5hiulKyarbc1Da4pprDUXHf52ovF-IzuKUMG-GlE7-EDzMhQ3KqM6KymGtdamaUKrNZNpbSpiZc18ZiDDnrvM_6DP5rbWISC78O-bkosg5YU_KaZBX0KhV8jMHY_6sEi20vou9FbHsRf71k11nvcsaYHQetGGUUfgCAiYhJ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pant, Sudarshan</creator><creator>Yang, Hyung-Jeong</creator><creator>Lim, Eunchae</creator><creator>Kim, Soo-Hyung</creator><creator>Yoo, Seok-Bong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3575-5035</orcidid><orcidid>https://orcid.org/0000-0003-3339-4192</orcidid><orcidid>https://orcid.org/0000-0003-3024-5060</orcidid><orcidid>https://orcid.org/0000-0002-2385-9673</orcidid><orcidid>https://orcid.org/0000-0002-6528-701X</orcidid></search><sort><creationdate>2023</creationdate><title>PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality as a Context</title><author>Pant, Sudarshan ; Yang, Hyung-Jeong ; Lim, Eunchae ; Kim, Soo-Hyung ; Yoo, Seok-Bong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Arousal</topic><topic>Blood volume</topic><topic>Context</topic><topic>Data recording</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>emotion classification</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Labels</topic><topic>Motion pictures</topic><topic>Personality</topic><topic>personality traits</topic><topic>Physiological signals</topic><topic>Physiology</topic><topic>Skin temperature</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pant, Sudarshan</creatorcontrib><creatorcontrib>Yang, Hyung-Jeong</creatorcontrib><creatorcontrib>Lim, Eunchae</creatorcontrib><creatorcontrib>Kim, Soo-Hyung</creatorcontrib><creatorcontrib>Yoo, Seok-Bong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pant, Sudarshan</au><au>Yang, Hyung-Jeong</au><au>Lim, Eunchae</au><au>Kim, Soo-Hyung</au><au>Yoo, Seok-Bong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality as a Context</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>107638</spage><epage>107656</epage><pages>107638-107656</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Physiological signals are widely used in the recognition of affective status. Recording of such physiological signals involves elicitation of emotions through different stimuli including video-based stimulus. Considering that the same stimulus videos often induce different emotions in different individuals, emotion recognition in such a scenario requires consideration of the individual differences in the consumption of the stimulus content. With this as our goal, we present a Physiological dataset for Multimodal Emotion Recognition (PhyMER) for studying emotion through physiological response with personality as a context. The PhyMER dataset consists of electroencephalogram (EEG), electrodermal activity (EDA), blood volume pulse (BVP), and skin temperature along with the personality traits of 30 participants. We collected the video-based stimulus dataset for emotion elicitation and developed a web-based annotation tool for labeling felt emotions. We compared the stimulus labels and the self-annotation of felt emotions labeled during physiological data recording. Correlation among personalities was analyzed to study the impact of personality on the intensity of emotions in arousal and valence dimensions. Finally, we proposed a baseline model for the classification of emotions using physiological signals. The dataset is publicly available to the academic community for analysis of affective states and the development of emotion recognition models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3320053</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3575-5035</orcidid><orcidid>https://orcid.org/0000-0003-3339-4192</orcidid><orcidid>https://orcid.org/0000-0003-3024-5060</orcidid><orcidid>https://orcid.org/0000-0002-2385-9673</orcidid><orcidid>https://orcid.org/0000-0002-6528-701X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.107638-107656
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10265252
source IEEE Open Access Journals
subjects Annotations
Arousal
Blood volume
Context
Data recording
Datasets
EEG
Electrocardiography
Electroencephalography
emotion classification
Emotion recognition
Emotions
Labels
Motion pictures
Personality
personality traits
Physiological signals
Physiology
Skin temperature
Videos
title PhyMER: Physiological Dataset for Multimodal Emotion Recognition With Personality as a Context
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PhyMER:%20Physiological%20Dataset%20for%20Multimodal%20Emotion%20Recognition%20With%20Personality%20as%20a%20Context&rft.jtitle=IEEE%20access&rft.au=Pant,%20Sudarshan&rft.date=2023&rft.volume=11&rft.spage=107638&rft.epage=107656&rft.pages=107638-107656&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3320053&rft_dat=%3Cproquest_ieee_%3E2873584971%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-b0786a2bb14129399373ff3c4d1913f25d21117f3985c5d6ca685d21bf8072d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873584971&rft_id=info:pmid/&rft_ieee_id=10265252&rfr_iscdi=true