Loading…

Can ChatGPT's Responses Boost Traditional Natural Language Processing?

The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated...

Full description

Saved in:
Bibliographic Details
Published in:IEEE intelligent systems 2023-09, Vol.38 (5), p.5-11
Main Authors: Amin, Mostafa M., Cambria, Erik, Schuller, Bjorn W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973
cites cdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973
container_end_page 11
container_issue 5
container_start_page 5
container_title IEEE intelligent systems
container_volume 38
creator Amin, Mostafa M.
Cambria, Erik
Schuller, Bjorn W.
Cambria, Erik
description The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.
doi_str_mv 10.1109/MIS.2023.3305861
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10269775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10269775</ieee_id><sourcerecordid>2872451893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBEYmBK8fnbE4KIlkoFKiizZRKnpCpxsJOB_x5X7cD0nk6_d3d6CF0CngBgffs8f58QTOiEUsyVgCM0As0gB6LZcfJ854Ukp-gsxg1OJAY1QtPCtlnxZfvZcnUTszcXO99GF7MH72OfrYKtmr7xrd1mL7YfQtKFbdeDXbtsGXzpYmza9d05OqntNrqLg47Rx_RxVTzli9fZvLhf5CWlrM8Bl4JLCbVQvLKMK650rRmVtKoF-9S6drwqhQatqEozix2ukwOteSW0pGN0vd_bBf8zuNibjR9C-i4aoiRhHJSmicJ7qgw-xuBq04Xm24ZfA9js2jKpLbNryxzaSpGrfaRxzv3DSboqOf0DlJtjzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872451893</pqid></control><display><type>article</type><title>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>IEEE Xplore (Online service)</source><creator>Amin, Mostafa M. ; Cambria, Erik ; Schuller, Bjorn W. ; Cambria, Erik</creator><contributor>Erik Cambria</contributor><creatorcontrib>Amin, Mostafa M. ; Cambria, Erik ; Schuller, Bjorn W. ; Cambria, Erik ; Erik Cambria</creatorcontrib><description>The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2023.3305861</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Affective computing ; Artificial intelligence ; Chatbots ; Computational modeling ; Data mining ; Employment ; Natural language processing ; Sentiment analysis ; Task analysis</subject><ispartof>IEEE intelligent systems, 2023-09, Vol.38 (5), p.5-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</citedby><cites>FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</cites><orcidid>0000-0002-3030-1280 ; 0000-0002-6478-8699 ; 0000-0002-3175-2817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10269775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,34135,54796</link.rule.ids></links><search><contributor>Erik Cambria</contributor><creatorcontrib>Amin, Mostafa M.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Schuller, Bjorn W.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><title>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.</description><subject>Affective computing</subject><subject>Artificial intelligence</subject><subject>Chatbots</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Employment</subject><subject>Natural language processing</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBEYmBK8fnbE4KIlkoFKiizZRKnpCpxsJOB_x5X7cD0nk6_d3d6CF0CngBgffs8f58QTOiEUsyVgCM0As0gB6LZcfJ854Ukp-gsxg1OJAY1QtPCtlnxZfvZcnUTszcXO99GF7MH72OfrYKtmr7xrd1mL7YfQtKFbdeDXbtsGXzpYmza9d05OqntNrqLg47Rx_RxVTzli9fZvLhf5CWlrM8Bl4JLCbVQvLKMK650rRmVtKoF-9S6drwqhQatqEozix2ukwOteSW0pGN0vd_bBf8zuNibjR9C-i4aoiRhHJSmicJ7qgw-xuBq04Xm24ZfA9js2jKpLbNryxzaSpGrfaRxzv3DSboqOf0DlJtjzQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Amin, Mostafa M.</creator><creator>Cambria, Erik</creator><creator>Schuller, Bjorn W.</creator><creator>Cambria, Erik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0002-6478-8699</orcidid><orcidid>https://orcid.org/0000-0002-3175-2817</orcidid></search><sort><creationdate>20230901</creationdate><title>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</title><author>Amin, Mostafa M. ; Cambria, Erik ; Schuller, Bjorn W. ; Cambria, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affective computing</topic><topic>Artificial intelligence</topic><topic>Chatbots</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Employment</topic><topic>Natural language processing</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Mostafa M.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Schuller, Bjorn W.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Mostafa M.</au><au>Cambria, Erik</au><au>Schuller, Bjorn W.</au><au>Cambria, Erik</au><au>Erik Cambria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>5</spage><epage>11</epage><pages>5-11</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2023.3305861</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0002-6478-8699</orcidid><orcidid>https://orcid.org/0000-0002-3175-2817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2023-09, Vol.38 (5), p.5-11
issn 1541-1672
1941-1294
language eng
recordid cdi_ieee_primary_10269775
source Library & Information Science Abstracts (LISA); IEEE Xplore (Online service)
subjects Affective computing
Artificial intelligence
Chatbots
Computational modeling
Data mining
Employment
Natural language processing
Sentiment analysis
Task analysis
title Can ChatGPT's Responses Boost Traditional Natural Language Processing?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20ChatGPT's%20Responses%20Boost%20Traditional%20Natural%20Language%20Processing?&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Amin,%20Mostafa%20M.&rft.date=2023-09-01&rft.volume=38&rft.issue=5&rft.spage=5&rft.epage=11&rft.pages=5-11&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2023.3305861&rft_dat=%3Cproquest_ieee_%3E2872451893%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872451893&rft_id=info:pmid/&rft_ieee_id=10269775&rfr_iscdi=true