Loading…
Can ChatGPT's Responses Boost Traditional Natural Language Processing?
The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated...
Saved in:
Published in: | IEEE intelligent systems 2023-09, Vol.38 (5), p.5-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973 |
container_end_page | 11 |
container_issue | 5 |
container_start_page | 5 |
container_title | IEEE intelligent systems |
container_volume | 38 |
creator | Amin, Mostafa M. Cambria, Erik Schuller, Bjorn W. Cambria, Erik |
description | The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion. |
doi_str_mv | 10.1109/MIS.2023.3305861 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10269775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10269775</ieee_id><sourcerecordid>2872451893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBEYmBK8fnbE4KIlkoFKiizZRKnpCpxsJOB_x5X7cD0nk6_d3d6CF0CngBgffs8f58QTOiEUsyVgCM0As0gB6LZcfJ854Ukp-gsxg1OJAY1QtPCtlnxZfvZcnUTszcXO99GF7MH72OfrYKtmr7xrd1mL7YfQtKFbdeDXbtsGXzpYmza9d05OqntNrqLg47Rx_RxVTzli9fZvLhf5CWlrM8Bl4JLCbVQvLKMK650rRmVtKoF-9S6drwqhQatqEozix2ukwOteSW0pGN0vd_bBf8zuNibjR9C-i4aoiRhHJSmicJ7qgw-xuBq04Xm24ZfA9js2jKpLbNryxzaSpGrfaRxzv3DSboqOf0DlJtjzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872451893</pqid></control><display><type>article</type><title>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</title><source>Library & Information Science Abstracts (LISA)</source><source>IEEE Xplore (Online service)</source><creator>Amin, Mostafa M. ; Cambria, Erik ; Schuller, Bjorn W. ; Cambria, Erik</creator><contributor>Erik Cambria</contributor><creatorcontrib>Amin, Mostafa M. ; Cambria, Erik ; Schuller, Bjorn W. ; Cambria, Erik ; Erik Cambria</creatorcontrib><description>The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2023.3305861</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Affective computing ; Artificial intelligence ; Chatbots ; Computational modeling ; Data mining ; Employment ; Natural language processing ; Sentiment analysis ; Task analysis</subject><ispartof>IEEE intelligent systems, 2023-09, Vol.38 (5), p.5-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</citedby><cites>FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</cites><orcidid>0000-0002-3030-1280 ; 0000-0002-6478-8699 ; 0000-0002-3175-2817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10269775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,34135,54796</link.rule.ids></links><search><contributor>Erik Cambria</contributor><creatorcontrib>Amin, Mostafa M.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Schuller, Bjorn W.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><title>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.</description><subject>Affective computing</subject><subject>Artificial intelligence</subject><subject>Chatbots</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Employment</subject><subject>Natural language processing</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBEYmBK8fnbE4KIlkoFKiizZRKnpCpxsJOB_x5X7cD0nk6_d3d6CF0CngBgffs8f58QTOiEUsyVgCM0As0gB6LZcfJ854Ukp-gsxg1OJAY1QtPCtlnxZfvZcnUTszcXO99GF7MH72OfrYKtmr7xrd1mL7YfQtKFbdeDXbtsGXzpYmza9d05OqntNrqLg47Rx_RxVTzli9fZvLhf5CWlrM8Bl4JLCbVQvLKMK650rRmVtKoF-9S6drwqhQatqEozix2ukwOteSW0pGN0vd_bBf8zuNibjR9C-i4aoiRhHJSmicJ7qgw-xuBq04Xm24ZfA9js2jKpLbNryxzaSpGrfaRxzv3DSboqOf0DlJtjzQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Amin, Mostafa M.</creator><creator>Cambria, Erik</creator><creator>Schuller, Bjorn W.</creator><creator>Cambria, Erik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0002-6478-8699</orcidid><orcidid>https://orcid.org/0000-0002-3175-2817</orcidid></search><sort><creationdate>20230901</creationdate><title>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</title><author>Amin, Mostafa M. ; Cambria, Erik ; Schuller, Bjorn W. ; Cambria, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affective computing</topic><topic>Artificial intelligence</topic><topic>Chatbots</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Employment</topic><topic>Natural language processing</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Mostafa M.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Schuller, Bjorn W.</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Mostafa M.</au><au>Cambria, Erik</au><au>Schuller, Bjorn W.</au><au>Cambria, Erik</au><au>Erik Cambria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can ChatGPT's Responses Boost Traditional Natural Language Processing?</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>5</spage><epage>11</epage><pages>5-11</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>The employment of foundation models is steadily expanding, especially with the launch of ChatGPT and the release of other foundation models. These models have shown the potential of emerging capabilities to solve problems without being particularly trained to solve them. A previous work demonstrated these emerging capabilities in affective computing tasks; the performance quality was similar to that of traditional natural language processing (NLP) techniques but fell short of specialized trained models, like fine-tuning of the RoBERTa language model. In this work, we extend this by exploring whether ChatGPT has novel knowledge that would enhance existing specialized models when they are fused together. We achieve this by investigating the utility of verbose responses from ChatGPT for solving a downstream task in addition to studying the utility of fusing that with existing NLP methods. The study is conducted on three affective computing problems: namely, sentiment analysis, suicide tendency detection, and big-five personality assessment. The results conclude that ChatGPT has, indeed, novel knowledge that can improve existing NLP techniques by way of fusion, be it early or late fusion.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2023.3305861</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0002-6478-8699</orcidid><orcidid>https://orcid.org/0000-0002-3175-2817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2023-09, Vol.38 (5), p.5-11 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_ieee_primary_10269775 |
source | Library & Information Science Abstracts (LISA); IEEE Xplore (Online service) |
subjects | Affective computing Artificial intelligence Chatbots Computational modeling Data mining Employment Natural language processing Sentiment analysis Task analysis |
title | Can ChatGPT's Responses Boost Traditional Natural Language Processing? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20ChatGPT's%20Responses%20Boost%20Traditional%20Natural%20Language%20Processing?&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Amin,%20Mostafa%20M.&rft.date=2023-09-01&rft.volume=38&rft.issue=5&rft.spage=5&rft.epage=11&rft.pages=5-11&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2023.3305861&rft_dat=%3Cproquest_ieee_%3E2872451893%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-10c65771f685da458589f94373df64b99fe5dc69198383dfa0e0f3831995d6973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872451893&rft_id=info:pmid/&rft_ieee_id=10269775&rfr_iscdi=true |