Loading…

Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals

This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission ( T_{\text {r}} ) map of any refractive index (RI) function n( {t} ). To demonstrate this, we have selected the RI of the sine function, cosine funct...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2024-01, Vol.72 (1), p.674-682
Main Authors: Dong, Rui-Yang, Liu, You-Ming, Sui, Jun-Yang, Zhang, Hai-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943
container_end_page 682
container_issue 1
container_start_page 674
container_title IEEE transactions on antennas and propagation
container_volume 72
creator Dong, Rui-Yang
Liu, You-Ming
Sui, Jun-Yang
Zhang, Hai-Feng
description This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission ( T_{\text {r}} ) map of any refractive index (RI) function n( {t} ). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of T_{\text {r}} and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.
doi_str_mv 10.1109/TAP.2023.3320196
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10272278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10272278</ieee_id><sourcerecordid>2924036985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc7s51qV-QMGCC3oLMZmtW9rNmmQP_e9NqQdPMw9-783wELqlZEYpUQ_NYj1jhPEZ54xQVZ6hCZWyKhhj9BxNCKFVoVj5eYmuYtxmKSohJujj0fQOv6cw2jQGwEfVwH7wwexw4we_85vO5n3pNpA5kwD7Fte-T10_-jHi9bdPvu8sbro94DocYjK7eI0u2jzg5m9OUfO0bOqXYvX2_FovVoVlQqb8XenAOmc4GCEMp0KQL-5E6bgjvOTGOiYpl61Uai55xRQDRYVUpi2JEnyK7k-xQ_A_I8Skt34Mfb6oMypyhKpkpsiJssHHGKDVQ-j2Jhw0JfrYns7t6WN7-q-9bLk7WToA-IezOWPziv8CUipqiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924036985</pqid></control><display><type>article</type><title>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Rui-Yang ; Liu, You-Ming ; Sui, Jun-Yang ; Zhang, Hai-Feng</creator><creatorcontrib>Dong, Rui-Yang ; Liu, You-Ming ; Sui, Jun-Yang ; Zhang, Hai-Feng</creatorcontrib><description><![CDATA[This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission (<inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula>) map of any refractive index (RI) function n(<inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of <inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula> and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3320196</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band structure ; Continuity (mathematics) ; continuous time crystals ; Crystals ; Electric fields ; Electromagnetic scattering ; Exponential functions ; interface state ; Photonic crystals ; Refractive index ; Refractivity ; Time-frequency analysis ; topological edge sate ; Topological insulators ; Topology ; Trigonometric functions ; Zak phase</subject><ispartof>IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.674-682</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943</cites><orcidid>0000-0002-9890-8345 ; 0000-0001-5663-0499 ; 0000-0001-7851-9759 ; 0000-0001-7064-3659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10272278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dong, Rui-Yang</creatorcontrib><creatorcontrib>Liu, You-Ming</creatorcontrib><creatorcontrib>Sui, Jun-Yang</creatorcontrib><creatorcontrib>Zhang, Hai-Feng</creatorcontrib><title>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission (<inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula>) map of any refractive index (RI) function n(<inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of <inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula> and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.]]></description><subject>Band structure</subject><subject>Continuity (mathematics)</subject><subject>continuous time crystals</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Electromagnetic scattering</subject><subject>Exponential functions</subject><subject>interface state</subject><subject>Photonic crystals</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Time-frequency analysis</subject><subject>topological edge sate</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Trigonometric functions</subject><subject>Zak phase</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc7s51qV-QMGCC3oLMZmtW9rNmmQP_e9NqQdPMw9-783wELqlZEYpUQ_NYj1jhPEZ54xQVZ6hCZWyKhhj9BxNCKFVoVj5eYmuYtxmKSohJujj0fQOv6cw2jQGwEfVwH7wwexw4we_85vO5n3pNpA5kwD7Fte-T10_-jHi9bdPvu8sbro94DocYjK7eI0u2jzg5m9OUfO0bOqXYvX2_FovVoVlQqb8XenAOmc4GCEMp0KQL-5E6bgjvOTGOiYpl61Uai55xRQDRYVUpi2JEnyK7k-xQ_A_I8Skt34Mfb6oMypyhKpkpsiJssHHGKDVQ-j2Jhw0JfrYns7t6WN7-q-9bLk7WToA-IezOWPziv8CUipqiA</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Dong, Rui-Yang</creator><creator>Liu, You-Ming</creator><creator>Sui, Jun-Yang</creator><creator>Zhang, Hai-Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9890-8345</orcidid><orcidid>https://orcid.org/0000-0001-5663-0499</orcidid><orcidid>https://orcid.org/0000-0001-7851-9759</orcidid><orcidid>https://orcid.org/0000-0001-7064-3659</orcidid></search><sort><creationdate>202401</creationdate><title>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</title><author>Dong, Rui-Yang ; Liu, You-Ming ; Sui, Jun-Yang ; Zhang, Hai-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structure</topic><topic>Continuity (mathematics)</topic><topic>continuous time crystals</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Electromagnetic scattering</topic><topic>Exponential functions</topic><topic>interface state</topic><topic>Photonic crystals</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Time-frequency analysis</topic><topic>topological edge sate</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Trigonometric functions</topic><topic>Zak phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Rui-Yang</creatorcontrib><creatorcontrib>Liu, You-Ming</creatorcontrib><creatorcontrib>Sui, Jun-Yang</creatorcontrib><creatorcontrib>Zhang, Hai-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Rui-Yang</au><au>Liu, You-Ming</au><au>Sui, Jun-Yang</au><au>Zhang, Hai-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-01</date><risdate>2024</risdate><volume>72</volume><issue>1</issue><spage>674</spage><epage>682</epage><pages>674-682</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission (<inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula>) map of any refractive index (RI) function n(<inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of <inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula> and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3320196</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9890-8345</orcidid><orcidid>https://orcid.org/0000-0001-5663-0499</orcidid><orcidid>https://orcid.org/0000-0001-7851-9759</orcidid><orcidid>https://orcid.org/0000-0001-7064-3659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.674-682
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_10272278
source IEEE Electronic Library (IEL) Journals
subjects Band structure
Continuity (mathematics)
continuous time crystals
Crystals
Electric fields
Electromagnetic scattering
Exponential functions
interface state
Photonic crystals
Refractive index
Refractivity
Time-frequency analysis
topological edge sate
Topological insulators
Topology
Trigonometric functions
Zak phase
title Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Structure%20and%20Temporal%20Topological%20Edge%20State%20of%20Continuous%20Photonic%20Time%20Crystals&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dong,%20Rui-Yang&rft.date=2024-01&rft.volume=72&rft.issue=1&rft.spage=674&rft.epage=682&rft.pages=674-682&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3320196&rft_dat=%3Cproquest_ieee_%3E2924036985%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924036985&rft_id=info:pmid/&rft_ieee_id=10272278&rfr_iscdi=true