Loading…
Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals
This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission ( T_{\text {r}} ) map of any refractive index (RI) function n( {t} ). To demonstrate this, we have selected the RI of the sine function, cosine funct...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2024-01, Vol.72 (1), p.674-682 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943 |
container_end_page | 682 |
container_issue | 1 |
container_start_page | 674 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 72 |
creator | Dong, Rui-Yang Liu, You-Ming Sui, Jun-Yang Zhang, Hai-Feng |
description | This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission ( T_{\text {r}} ) map of any refractive index (RI) function n( {t} ). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of T_{\text {r}} and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications. |
doi_str_mv | 10.1109/TAP.2023.3320196 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10272278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10272278</ieee_id><sourcerecordid>2924036985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc7s51qV-QMGCC3oLMZmtW9rNmmQP_e9NqQdPMw9-783wELqlZEYpUQ_NYj1jhPEZ54xQVZ6hCZWyKhhj9BxNCKFVoVj5eYmuYtxmKSohJujj0fQOv6cw2jQGwEfVwH7wwexw4we_85vO5n3pNpA5kwD7Fte-T10_-jHi9bdPvu8sbro94DocYjK7eI0u2jzg5m9OUfO0bOqXYvX2_FovVoVlQqb8XenAOmc4GCEMp0KQL-5E6bgjvOTGOiYpl61Uai55xRQDRYVUpi2JEnyK7k-xQ_A_I8Skt34Mfb6oMypyhKpkpsiJssHHGKDVQ-j2Jhw0JfrYns7t6WN7-q-9bLk7WToA-IezOWPziv8CUipqiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924036985</pqid></control><display><type>article</type><title>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Rui-Yang ; Liu, You-Ming ; Sui, Jun-Yang ; Zhang, Hai-Feng</creator><creatorcontrib>Dong, Rui-Yang ; Liu, You-Ming ; Sui, Jun-Yang ; Zhang, Hai-Feng</creatorcontrib><description><![CDATA[This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission (<inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula>) map of any refractive index (RI) function n(<inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of <inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula> and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3320196</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band structure ; Continuity (mathematics) ; continuous time crystals ; Crystals ; Electric fields ; Electromagnetic scattering ; Exponential functions ; interface state ; Photonic crystals ; Refractive index ; Refractivity ; Time-frequency analysis ; topological edge sate ; Topological insulators ; Topology ; Trigonometric functions ; Zak phase</subject><ispartof>IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.674-682</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943</cites><orcidid>0000-0002-9890-8345 ; 0000-0001-5663-0499 ; 0000-0001-7851-9759 ; 0000-0001-7064-3659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10272278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dong, Rui-Yang</creatorcontrib><creatorcontrib>Liu, You-Ming</creatorcontrib><creatorcontrib>Sui, Jun-Yang</creatorcontrib><creatorcontrib>Zhang, Hai-Feng</creatorcontrib><title>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission (<inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula>) map of any refractive index (RI) function n(<inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of <inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula> and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.]]></description><subject>Band structure</subject><subject>Continuity (mathematics)</subject><subject>continuous time crystals</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Electromagnetic scattering</subject><subject>Exponential functions</subject><subject>interface state</subject><subject>Photonic crystals</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Time-frequency analysis</subject><subject>topological edge sate</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Trigonometric functions</subject><subject>Zak phase</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc7s51qV-QMGCC3oLMZmtW9rNmmQP_e9NqQdPMw9-783wELqlZEYpUQ_NYj1jhPEZ54xQVZ6hCZWyKhhj9BxNCKFVoVj5eYmuYtxmKSohJujj0fQOv6cw2jQGwEfVwH7wwexw4we_85vO5n3pNpA5kwD7Fte-T10_-jHi9bdPvu8sbro94DocYjK7eI0u2jzg5m9OUfO0bOqXYvX2_FovVoVlQqb8XenAOmc4GCEMp0KQL-5E6bgjvOTGOiYpl61Uai55xRQDRYVUpi2JEnyK7k-xQ_A_I8Skt34Mfb6oMypyhKpkpsiJssHHGKDVQ-j2Jhw0JfrYns7t6WN7-q-9bLk7WToA-IezOWPziv8CUipqiA</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Dong, Rui-Yang</creator><creator>Liu, You-Ming</creator><creator>Sui, Jun-Yang</creator><creator>Zhang, Hai-Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9890-8345</orcidid><orcidid>https://orcid.org/0000-0001-5663-0499</orcidid><orcidid>https://orcid.org/0000-0001-7851-9759</orcidid><orcidid>https://orcid.org/0000-0001-7064-3659</orcidid></search><sort><creationdate>202401</creationdate><title>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</title><author>Dong, Rui-Yang ; Liu, You-Ming ; Sui, Jun-Yang ; Zhang, Hai-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structure</topic><topic>Continuity (mathematics)</topic><topic>continuous time crystals</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Electromagnetic scattering</topic><topic>Exponential functions</topic><topic>interface state</topic><topic>Photonic crystals</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Time-frequency analysis</topic><topic>topological edge sate</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Trigonometric functions</topic><topic>Zak phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Rui-Yang</creatorcontrib><creatorcontrib>Liu, You-Ming</creatorcontrib><creatorcontrib>Sui, Jun-Yang</creatorcontrib><creatorcontrib>Zhang, Hai-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Rui-Yang</au><au>Liu, You-Ming</au><au>Sui, Jun-Yang</au><au>Zhang, Hai-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-01</date><risdate>2024</risdate><volume>72</volume><issue>1</issue><spage>674</spage><epage>682</epage><pages>674-682</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[This article introduces the propagation simulation of photonic time crystals (PTCs) using continuous time. In theory, it can simulate the transmission (<inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula>) map of any refractive index (RI) function n(<inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula>). To demonstrate this, we have selected the RI of the sine function, cosine function, and exponential function as examples and studied the characteristics of <inline-formula> <tex-math notation="LaTeX">T_{\text {r}} </tex-math></inline-formula> and band structures systematically by creating maps. The dimension of the slow wave angle has also been added to analogize the abovementioned graphs at 0°, 30°, 45°, and 60°. By calculating the Zak phase of two different PTCs systems, it is predicted that the interface state will appear. It can be observed that these properties are very similar to the conventional photonic crystals (PCs). Additionally, the continuous PTCs have a topology similar to that of a topological insulator, producing the effect of a temporal topological edge state. The temporal topological edge state is represented by a local peak near the amplitude and verified by plotting the electric field variation. This work advances the theoretical propagation study of PTCs and accelerates theoretical engineering applications with extraordinary potential applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3320196</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9890-8345</orcidid><orcidid>https://orcid.org/0000-0001-5663-0499</orcidid><orcidid>https://orcid.org/0000-0001-7851-9759</orcidid><orcidid>https://orcid.org/0000-0001-7064-3659</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2024-01, Vol.72 (1), p.674-682 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_10272278 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Band structure Continuity (mathematics) continuous time crystals Crystals Electric fields Electromagnetic scattering Exponential functions interface state Photonic crystals Refractive index Refractivity Time-frequency analysis topological edge sate Topological insulators Topology Trigonometric functions Zak phase |
title | Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Structure%20and%20Temporal%20Topological%20Edge%20State%20of%20Continuous%20Photonic%20Time%20Crystals&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dong,%20Rui-Yang&rft.date=2024-01&rft.volume=72&rft.issue=1&rft.spage=674&rft.epage=682&rft.pages=674-682&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3320196&rft_dat=%3Cproquest_ieee_%3E2924036985%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-226decdda3ea44a31440b3d46d3d0363acd25135f5997538292e91459af60943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924036985&rft_id=info:pmid/&rft_ieee_id=10272278&rfr_iscdi=true |