Loading…
A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP
True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irreg...
Saved in:
Published in: | IEEE transactions on information forensics and security 2024, Vol.19, p.320-333 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3 |
container_end_page | 333 |
container_issue | |
container_start_page | 320 |
container_title | IEEE transactions on information forensics and security |
container_volume | 19 |
creator | Wei, Xiangye Xiu, Liming Cai, Yimao |
description | True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA. |
doi_str_mv | 10.1109/TIFS.2023.3322602 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10273673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10273673</ieee_id><sourcerecordid>2890992619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1P7Kb7rGUfkHVou152WQnktLuxt1Ezb83oUU8zcvwzAzzRNE9wSNCsHzarubvI4opGzFGqcD0IhoQzkXcRXL5lwm7jm5C2GOcJESMB1EzQRvwoYK8Lr8AuQLtQmk_0NzDZwM2b-Pn8qdv6IBmtvaualFp0Zu2xh3RS3PMwKMFWPC6Lp1FhfNo43ytswOgpfbmW3tA07bDAuSNL-sWrTa30VWhDwHuznUY7eaz7XQZr18Xq-lkHec0EXXMizHLhMRUS5yOmWCS4yIDyTBwLoVJ05ybBBvOjJSCGk5YCoSKnGlhpDFsGD2e9lbede-EWu1d4213UtGxxFJSQWRHkROVexeCh0JVvjxq3yqCVW9X9XZVb1ed7XYzD6eZEgD-8TRlImXsF4PDdf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890992619</pqid></control><display><type>article</type><title>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wei, Xiangye ; Xiu, Liming ; Cai, Yimao</creator><creatorcontrib>Wei, Xiangye ; Xiu, Liming ; Cai, Yimao</creatorcontrib><description>True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2023.3322602</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos theory ; Circuits ; Cybersecurity ; Electromagnetic radiation ; Entropy ; Field programmable gate arrays ; Frequency control ; frequency synthesis ; IP networks ; Jitter ; Portability ; Random numbers ; Ring oscillators ; TAF-DPS ; Throughput ; true random umber generation ; Waveforms</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.320-333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3</cites><orcidid>0000-0002-6854-8211 ; 0000-0002-4252-0544 ; 0000-0003-4427-8066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10273673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wei, Xiangye</creatorcontrib><creatorcontrib>Xiu, Liming</creatorcontrib><creatorcontrib>Cai, Yimao</creatorcontrib><title>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.</description><subject>Chaos theory</subject><subject>Circuits</subject><subject>Cybersecurity</subject><subject>Electromagnetic radiation</subject><subject>Entropy</subject><subject>Field programmable gate arrays</subject><subject>Frequency control</subject><subject>frequency synthesis</subject><subject>IP networks</subject><subject>Jitter</subject><subject>Portability</subject><subject>Random numbers</subject><subject>Ring oscillators</subject><subject>TAF-DPS</subject><subject>Throughput</subject><subject>true random umber generation</subject><subject>Waveforms</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1P7Kb7rGUfkHVou152WQnktLuxt1Ezb83oUU8zcvwzAzzRNE9wSNCsHzarubvI4opGzFGqcD0IhoQzkXcRXL5lwm7jm5C2GOcJESMB1EzQRvwoYK8Lr8AuQLtQmk_0NzDZwM2b-Pn8qdv6IBmtvaualFp0Zu2xh3RS3PMwKMFWPC6Lp1FhfNo43ytswOgpfbmW3tA07bDAuSNL-sWrTa30VWhDwHuznUY7eaz7XQZr18Xq-lkHec0EXXMizHLhMRUS5yOmWCS4yIDyTBwLoVJ05ybBBvOjJSCGk5YCoSKnGlhpDFsGD2e9lbede-EWu1d4213UtGxxFJSQWRHkROVexeCh0JVvjxq3yqCVW9X9XZVb1ed7XYzD6eZEgD-8TRlImXsF4PDdf0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wei, Xiangye</creator><creator>Xiu, Liming</creator><creator>Cai, Yimao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6854-8211</orcidid><orcidid>https://orcid.org/0000-0002-4252-0544</orcidid><orcidid>https://orcid.org/0000-0003-4427-8066</orcidid></search><sort><creationdate>2024</creationdate><title>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</title><author>Wei, Xiangye ; Xiu, Liming ; Cai, Yimao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chaos theory</topic><topic>Circuits</topic><topic>Cybersecurity</topic><topic>Electromagnetic radiation</topic><topic>Entropy</topic><topic>Field programmable gate arrays</topic><topic>Frequency control</topic><topic>frequency synthesis</topic><topic>IP networks</topic><topic>Jitter</topic><topic>Portability</topic><topic>Random numbers</topic><topic>Ring oscillators</topic><topic>TAF-DPS</topic><topic>Throughput</topic><topic>true random umber generation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiangye</creatorcontrib><creatorcontrib>Xiu, Liming</creatorcontrib><creatorcontrib>Cai, Yimao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiangye</au><au>Xiu, Liming</au><au>Cai, Yimao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>320</spage><epage>333</epage><pages>320-333</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2023.3322602</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6854-8211</orcidid><orcidid>https://orcid.org/0000-0002-4252-0544</orcidid><orcidid>https://orcid.org/0000-0003-4427-8066</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2024, Vol.19, p.320-333 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_10273673 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Chaos theory Circuits Cybersecurity Electromagnetic radiation Entropy Field programmable gate arrays Frequency control frequency synthesis IP networks Jitter Portability Random numbers Ring oscillators TAF-DPS Throughput true random umber generation Waveforms |
title | A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Perspective%20of%20Using%20Frequency-Mixing%20as%20Entropy%20in%20Random%20Number%20Generation%20for%20Portable%20Hardware%20Cybersecurity%20IP&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Wei,%20Xiangye&rft.date=2024&rft.volume=19&rft.spage=320&rft.epage=333&rft.pages=320-333&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2023.3322602&rft_dat=%3Cproquest_ieee_%3E2890992619%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890992619&rft_id=info:pmid/&rft_ieee_id=10273673&rfr_iscdi=true |