Loading…

A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP

True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irreg...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2024, Vol.19, p.320-333
Main Authors: Wei, Xiangye, Xiu, Liming, Cai, Yimao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3
container_end_page 333
container_issue
container_start_page 320
container_title IEEE transactions on information forensics and security
container_volume 19
creator Wei, Xiangye
Xiu, Liming
Cai, Yimao
description True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.
doi_str_mv 10.1109/TIFS.2023.3322602
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10273673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10273673</ieee_id><sourcerecordid>2890992619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1P7Kb7rGUfkHVou152WQnktLuxt1Ezb83oUU8zcvwzAzzRNE9wSNCsHzarubvI4opGzFGqcD0IhoQzkXcRXL5lwm7jm5C2GOcJESMB1EzQRvwoYK8Lr8AuQLtQmk_0NzDZwM2b-Pn8qdv6IBmtvaualFp0Zu2xh3RS3PMwKMFWPC6Lp1FhfNo43ytswOgpfbmW3tA07bDAuSNL-sWrTa30VWhDwHuznUY7eaz7XQZr18Xq-lkHec0EXXMizHLhMRUS5yOmWCS4yIDyTBwLoVJ05ybBBvOjJSCGk5YCoSKnGlhpDFsGD2e9lbede-EWu1d4213UtGxxFJSQWRHkROVexeCh0JVvjxq3yqCVW9X9XZVb1ed7XYzD6eZEgD-8TRlImXsF4PDdf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890992619</pqid></control><display><type>article</type><title>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wei, Xiangye ; Xiu, Liming ; Cai, Yimao</creator><creatorcontrib>Wei, Xiangye ; Xiu, Liming ; Cai, Yimao</creatorcontrib><description>True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2023.3322602</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos theory ; Circuits ; Cybersecurity ; Electromagnetic radiation ; Entropy ; Field programmable gate arrays ; Frequency control ; frequency synthesis ; IP networks ; Jitter ; Portability ; Random numbers ; Ring oscillators ; TAF-DPS ; Throughput ; true random umber generation ; Waveforms</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.320-333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3</cites><orcidid>0000-0002-6854-8211 ; 0000-0002-4252-0544 ; 0000-0003-4427-8066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10273673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wei, Xiangye</creatorcontrib><creatorcontrib>Xiu, Liming</creatorcontrib><creatorcontrib>Cai, Yimao</creatorcontrib><title>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.</description><subject>Chaos theory</subject><subject>Circuits</subject><subject>Cybersecurity</subject><subject>Electromagnetic radiation</subject><subject>Entropy</subject><subject>Field programmable gate arrays</subject><subject>Frequency control</subject><subject>frequency synthesis</subject><subject>IP networks</subject><subject>Jitter</subject><subject>Portability</subject><subject>Random numbers</subject><subject>Ring oscillators</subject><subject>TAF-DPS</subject><subject>Throughput</subject><subject>true random umber generation</subject><subject>Waveforms</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1P7Kb7rGUfkHVou152WQnktLuxt1Ezb83oUU8zcvwzAzzRNE9wSNCsHzarubvI4opGzFGqcD0IhoQzkXcRXL5lwm7jm5C2GOcJESMB1EzQRvwoYK8Lr8AuQLtQmk_0NzDZwM2b-Pn8qdv6IBmtvaualFp0Zu2xh3RS3PMwKMFWPC6Lp1FhfNo43ytswOgpfbmW3tA07bDAuSNL-sWrTa30VWhDwHuznUY7eaz7XQZr18Xq-lkHec0EXXMizHLhMRUS5yOmWCS4yIDyTBwLoVJ05ybBBvOjJSCGk5YCoSKnGlhpDFsGD2e9lbede-EWu1d4213UtGxxFJSQWRHkROVexeCh0JVvjxq3yqCVW9X9XZVb1ed7XYzD6eZEgD-8TRlImXsF4PDdf0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wei, Xiangye</creator><creator>Xiu, Liming</creator><creator>Cai, Yimao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6854-8211</orcidid><orcidid>https://orcid.org/0000-0002-4252-0544</orcidid><orcidid>https://orcid.org/0000-0003-4427-8066</orcidid></search><sort><creationdate>2024</creationdate><title>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</title><author>Wei, Xiangye ; Xiu, Liming ; Cai, Yimao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chaos theory</topic><topic>Circuits</topic><topic>Cybersecurity</topic><topic>Electromagnetic radiation</topic><topic>Entropy</topic><topic>Field programmable gate arrays</topic><topic>Frequency control</topic><topic>frequency synthesis</topic><topic>IP networks</topic><topic>Jitter</topic><topic>Portability</topic><topic>Random numbers</topic><topic>Ring oscillators</topic><topic>TAF-DPS</topic><topic>Throughput</topic><topic>true random umber generation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiangye</creatorcontrib><creatorcontrib>Xiu, Liming</creatorcontrib><creatorcontrib>Cai, Yimao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiangye</au><au>Xiu, Liming</au><au>Cai, Yimao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>320</spage><epage>333</epage><pages>320-333</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>True random number generator (TRNG) is a crucial component in security. In typical TRNGs, entropy comes directly from device noises. In this work, an improved method of using frequency-mixing as means for enriching entropy is implemented. A group of electromagnetic waves are mixed to create an irregular waveform that is then sampled to generate a random bitstream. Some part of the bitstream is fed back to the system for influencing the future frequencies of the sourcing waves, making it a chaotic system. The circuit-level support for this TRNG is the TAF-DPS (Time-Average-Frequency Direct Period Synthesis) technology. It can be digitally implemented, making the TRNG a portable IP. The merits of this TRNG include no need of special device, no post-processing, free of bias, programmable throughput, and hard-to-recognize spectrum. Those features make the TRNG suitable for a large array of applications, particularly for security in cyberspace. This TRNG is validated by a silicon chip on a 180 nm process, also on a FPGA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2023.3322602</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6854-8211</orcidid><orcidid>https://orcid.org/0000-0002-4252-0544</orcidid><orcidid>https://orcid.org/0000-0003-4427-8066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2024, Vol.19, p.320-333
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_10273673
source IEEE Electronic Library (IEL) Journals
subjects Chaos theory
Circuits
Cybersecurity
Electromagnetic radiation
Entropy
Field programmable gate arrays
Frequency control
frequency synthesis
IP networks
Jitter
Portability
Random numbers
Ring oscillators
TAF-DPS
Throughput
true random umber generation
Waveforms
title A Perspective of Using Frequency-Mixing as Entropy in Random Number Generation for Portable Hardware Cybersecurity IP
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Perspective%20of%20Using%20Frequency-Mixing%20as%20Entropy%20in%20Random%20Number%20Generation%20for%20Portable%20Hardware%20Cybersecurity%20IP&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Wei,%20Xiangye&rft.date=2024&rft.volume=19&rft.spage=320&rft.epage=333&rft.pages=320-333&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2023.3322602&rft_dat=%3Cproquest_ieee_%3E2890992619%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-5f83b6902a9078363950fbe930e5596d77c5d40d53d9962d5137e126c3a6d9dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890992619&rft_id=info:pmid/&rft_ieee_id=10273673&rfr_iscdi=true