Loading…
DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation
Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monoc...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-3a45fcb565bbd3b1be2cc0fb4406fc12ef2257e53580a86626eb5ac7ff2202623 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Shen, Mengjiao Wang, Zhongyi Su, Shuai Liu, Chengju Chen, Qijun |
description | Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monocular depth estimation methods primarily rely on daytime images, which limits their applicability to nighttime scenarios due to the substantial domain shift between daytime and nighttime styles. In this article, we propose a novel Day-Night Adaptation method (DNA-Depth) to realize monocular depth estimation in a night environment. Specifically, we simply use Fourier Transform to address the domain alignment problem. Our method does not require extra adversarial optimization but is quite effective. The simplicity of our method makes it easy to guide day-to-night domains. To the best of our knowledge, we are the first to utilize fast Fourier transformation for nighttime monocular depth estimation. Furthermore, to alleviate the problem of mobile light sources, we utilize an unsupervised joint learning framework for depth, optical flow, and ego-motion estimation in an end-to-end manner, which is coupled by 3-D geometry cues. Our model can simultaneously reason about the camera motion, the depth of a static background, and the optical flow of moving objects. Extensive experiments on the Oxford RobotCar, nuScenes, and Synthia datasets demonstrate the accuracy and precision of our method by comparing it with those state-of-the-art algorithms in depth estimation, both qualitatively and quantitatively. |
doi_str_mv | 10.1109/TIM.2023.3322498 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10273852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10273852</ieee_id><sourcerecordid>2881507172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-3a45fcb565bbd3b1be2cc0fb4406fc12ef2257e53580a86626eb5ac7ff2202623</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYnY527GdsIV-QKW2MJTZclybpipJsNOh_33Tj4HppLv37t79EHqkMKAUspfldD5gwPiAc8aSLL1CPSqEIpmU7Br1AGhKskTIW3QX4wYAlExUD32NFjkZuaZdv-IcT4L727nK7smbiW6FR2ZPFuXPusX5yjStacu6wr4OeF5Xtd1tTcAnLx7Htvw9je_RjTfb6B4utY--J-Pl8IPMPt-nw3xGLEtES7hJhLeFkKIoVryghWPWgi-SBKS3lDnPmFBOcJGCSbsfpCuEscp3fWCS8T56Pu9tQt1ljq3e1LtQdSc1S1MqQFF1VMFZZUMdY3BeN6ELGvaagj5y0x03feSmL9w6y9PZUjrn_smZ4qlg_AB06mf_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881507172</pqid></control><display><type>article</type><title>DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shen, Mengjiao ; Wang, Zhongyi ; Su, Shuai ; Liu, Chengju ; Chen, Qijun</creator><creatorcontrib>Shen, Mengjiao ; Wang, Zhongyi ; Su, Shuai ; Liu, Chengju ; Chen, Qijun</creatorcontrib><description>Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monocular depth estimation methods primarily rely on daytime images, which limits their applicability to nighttime scenarios due to the substantial domain shift between daytime and nighttime styles. In this article, we propose a novel Day-Night Adaptation method (DNA-Depth) to realize monocular depth estimation in a night environment. Specifically, we simply use Fourier Transform to address the domain alignment problem. Our method does not require extra adversarial optimization but is quite effective. The simplicity of our method makes it easy to guide day-to-night domains. To the best of our knowledge, we are the first to utilize fast Fourier transformation for nighttime monocular depth estimation. Furthermore, to alleviate the problem of mobile light sources, we utilize an unsupervised joint learning framework for depth, optical flow, and ego-motion estimation in an end-to-end manner, which is coupled by 3-D geometry cues. Our model can simultaneously reason about the camera motion, the depth of a static background, and the optical flow of moving objects. Extensive experiments on the Oxford RobotCar, nuScenes, and Synthia datasets demonstrate the accuracy and precision of our method by comparing it with those state-of-the-art algorithms in depth estimation, both qualitatively and quantitatively.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3322498</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Algorithms ; Cameras ; Daytime ; Depth estimation ; domain adaptation ; dynamic environment ; Estimation ; Fast Fourier transformations ; Fourier transform ; Fourier transforms ; Frequency estimation ; Frequency-domain analysis ; Light sources ; Lighting ; monocular vision ; Motion simulation ; Night ; Optical flow ; Optical flow (image analysis) ; Optimization ; Training</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-3a45fcb565bbd3b1be2cc0fb4406fc12ef2257e53580a86626eb5ac7ff2202623</cites><orcidid>0000-0002-6378-029X ; 0000-0002-2340-7634 ; 0000-0001-6144-8923 ; 0000-0001-7543-0855 ; 0000-0001-5644-1188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10273852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Shen, Mengjiao</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Su, Shuai</creatorcontrib><creatorcontrib>Liu, Chengju</creatorcontrib><creatorcontrib>Chen, Qijun</creatorcontrib><title>DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monocular depth estimation methods primarily rely on daytime images, which limits their applicability to nighttime scenarios due to the substantial domain shift between daytime and nighttime styles. In this article, we propose a novel Day-Night Adaptation method (DNA-Depth) to realize monocular depth estimation in a night environment. Specifically, we simply use Fourier Transform to address the domain alignment problem. Our method does not require extra adversarial optimization but is quite effective. The simplicity of our method makes it easy to guide day-to-night domains. To the best of our knowledge, we are the first to utilize fast Fourier transformation for nighttime monocular depth estimation. Furthermore, to alleviate the problem of mobile light sources, we utilize an unsupervised joint learning framework for depth, optical flow, and ego-motion estimation in an end-to-end manner, which is coupled by 3-D geometry cues. Our model can simultaneously reason about the camera motion, the depth of a static background, and the optical flow of moving objects. Extensive experiments on the Oxford RobotCar, nuScenes, and Synthia datasets demonstrate the accuracy and precision of our method by comparing it with those state-of-the-art algorithms in depth estimation, both qualitatively and quantitatively.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Daytime</subject><subject>Depth estimation</subject><subject>domain adaptation</subject><subject>dynamic environment</subject><subject>Estimation</subject><subject>Fast Fourier transformations</subject><subject>Fourier transform</subject><subject>Fourier transforms</subject><subject>Frequency estimation</subject><subject>Frequency-domain analysis</subject><subject>Light sources</subject><subject>Lighting</subject><subject>monocular vision</subject><subject>Motion simulation</subject><subject>Night</subject><subject>Optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Training</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYnY527GdsIV-QKW2MJTZclybpipJsNOh_33Tj4HppLv37t79EHqkMKAUspfldD5gwPiAc8aSLL1CPSqEIpmU7Br1AGhKskTIW3QX4wYAlExUD32NFjkZuaZdv-IcT4L727nK7smbiW6FR2ZPFuXPusX5yjStacu6wr4OeF5Xtd1tTcAnLx7Htvw9je_RjTfb6B4utY--J-Pl8IPMPt-nw3xGLEtES7hJhLeFkKIoVryghWPWgi-SBKS3lDnPmFBOcJGCSbsfpCuEscp3fWCS8T56Pu9tQt1ljq3e1LtQdSc1S1MqQFF1VMFZZUMdY3BeN6ELGvaagj5y0x03feSmL9w6y9PZUjrn_smZ4qlg_AB06mf_</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Shen, Mengjiao</creator><creator>Wang, Zhongyi</creator><creator>Su, Shuai</creator><creator>Liu, Chengju</creator><creator>Chen, Qijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6378-029X</orcidid><orcidid>https://orcid.org/0000-0002-2340-7634</orcidid><orcidid>https://orcid.org/0000-0001-6144-8923</orcidid><orcidid>https://orcid.org/0000-0001-7543-0855</orcidid><orcidid>https://orcid.org/0000-0001-5644-1188</orcidid></search><sort><creationdate>2023</creationdate><title>DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation</title><author>Shen, Mengjiao ; Wang, Zhongyi ; Su, Shuai ; Liu, Chengju ; Chen, Qijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-3a45fcb565bbd3b1be2cc0fb4406fc12ef2257e53580a86626eb5ac7ff2202623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Daytime</topic><topic>Depth estimation</topic><topic>domain adaptation</topic><topic>dynamic environment</topic><topic>Estimation</topic><topic>Fast Fourier transformations</topic><topic>Fourier transform</topic><topic>Fourier transforms</topic><topic>Frequency estimation</topic><topic>Frequency-domain analysis</topic><topic>Light sources</topic><topic>Lighting</topic><topic>monocular vision</topic><topic>Motion simulation</topic><topic>Night</topic><topic>Optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Mengjiao</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Su, Shuai</creatorcontrib><creatorcontrib>Liu, Chengju</creatorcontrib><creatorcontrib>Chen, Qijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Mengjiao</au><au>Wang, Zhongyi</au><au>Su, Shuai</au><au>Liu, Chengju</au><au>Chen, Qijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Autonomous driving necessitates ensuring safety across diverse environments, particularly in challenging conditions like low-light or nighttime scenarios. As a fundamental task in autonomous driving, monocular depth estimation has garnered significant attention and discussion. However, current monocular depth estimation methods primarily rely on daytime images, which limits their applicability to nighttime scenarios due to the substantial domain shift between daytime and nighttime styles. In this article, we propose a novel Day-Night Adaptation method (DNA-Depth) to realize monocular depth estimation in a night environment. Specifically, we simply use Fourier Transform to address the domain alignment problem. Our method does not require extra adversarial optimization but is quite effective. The simplicity of our method makes it easy to guide day-to-night domains. To the best of our knowledge, we are the first to utilize fast Fourier transformation for nighttime monocular depth estimation. Furthermore, to alleviate the problem of mobile light sources, we utilize an unsupervised joint learning framework for depth, optical flow, and ego-motion estimation in an end-to-end manner, which is coupled by 3-D geometry cues. Our model can simultaneously reason about the camera motion, the depth of a static background, and the optical flow of moving objects. Extensive experiments on the Oxford RobotCar, nuScenes, and Synthia datasets demonstrate the accuracy and precision of our method by comparing it with those state-of-the-art algorithms in depth estimation, both qualitatively and quantitatively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3322498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6378-029X</orcidid><orcidid>https://orcid.org/0000-0002-2340-7634</orcidid><orcidid>https://orcid.org/0000-0001-6144-8923</orcidid><orcidid>https://orcid.org/0000-0001-7543-0855</orcidid><orcidid>https://orcid.org/0000-0001-5644-1188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10273852 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation Algorithms Cameras Daytime Depth estimation domain adaptation dynamic environment Estimation Fast Fourier transformations Fourier transform Fourier transforms Frequency estimation Frequency-domain analysis Light sources Lighting monocular vision Motion simulation Night Optical flow Optical flow (image analysis) Optimization Training |
title | DNA-Depth: A Frequency-Based Day-Night Adaptation for Monocular Depth Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-Depth:%20A%20Frequency-Based%20Day-Night%20Adaptation%20for%20Monocular%20Depth%20Estimation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Shen,%20Mengjiao&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3322498&rft_dat=%3Cproquest_ieee_%3E2881507172%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-3a45fcb565bbd3b1be2cc0fb4406fc12ef2257e53580a86626eb5ac7ff2202623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2881507172&rft_id=info:pmid/&rft_ieee_id=10273852&rfr_iscdi=true |