Loading…

Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability

Application of gallium nitride high-electron-mobility transistors (GaN HEMTs) to millimeter-wave power amplifiers requires gate length scaling below 150 nm: in order to control short-channel effects, the gate-to-channel distance must be decreased, and the device epitaxial structure has to be complet...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2024-03, Vol.71 (3), p.1-12
Main Authors: Zanoni, Enrico, Santi, Carlo De, Gao, Zhan, Buffolo, Matteo, Fornasier, Mirko, Saro, Marco, Pieri, Francesco De, Rampazzo, Fabiana, Meneghesso, Gaudenzio, Meneghini, Matteo, Zagni, Nicolo, Chini, Alessandro, Verzellesi, Giovanni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263
cites cdi_FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263
container_end_page 12
container_issue 3
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 71
creator Zanoni, Enrico
Santi, Carlo De
Gao, Zhan
Buffolo, Matteo
Fornasier, Mirko
Saro, Marco
Pieri, Francesco De
Rampazzo, Fabiana
Meneghesso, Gaudenzio
Meneghini, Matteo
Zagni, Nicolo
Chini, Alessandro
Verzellesi, Giovanni
description Application of gallium nitride high-electron-mobility transistors (GaN HEMTs) to millimeter-wave power amplifiers requires gate length scaling below 150 nm: in order to control short-channel effects, the gate-to-channel distance must be decreased, and the device epitaxial structure has to be completely redesigned. A high 2-D electron gas (2DEG) carrier density can be preserved even with a very thin top barrier layer by substituting AlGaN with AlN, InAl(Ga)N, or ScAlN. Moreover, to prevent interaction of hot electrons with compensating impurities and defects in the doped GaN buffer, the latter has to be separated from the channel by a back barrier. Other device designs consist in adopting a graded channel (which controls the electric field) or to adopt nitrogen-polar (N-polar) GaN growth (which decreases the distance between gate and channel, thus attenuating short-channel effects). The aim of this article is to review the various options for controlling short-channel effects, improve off-state characteristics, and reduce drain-source leakage current. Advantages and potential drawbacks of each proposed solution are analyzed in terms of current collapse (CC), dispersion effects, and reliability.
doi_str_mv 10.1109/TED.2023.3318564
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10274766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10274766</ieee_id><sourcerecordid>2933609618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYm2KvxOzoRIoEgUJihgj1zmDqzQJjsvHzD9OShmYnu7uvXvSD6FjSsaUEn02zy_HjDA-5pxmUokdNKBSpolWQu2iASE0SzTP-D466LplPyoh2AB9z7wNzYd5B2zqEs98VfkVRAjJ82Z3be7wNJ_Nu3N8s2qNjbhxOG99NJ_eVPgxhrWN6wC4qfHjaxNiMnk1dQ0Vzp0DG7sRzqteQ3-fB9O2vn4Z_TY9QOXNwlc-fh2iPWeqDo7-dIiervL5ZJrc3l_fTC5uE8u5iInVmgjLpOQgpdEuy0rKAARxaZpmCyjFwgip0kVWasWkk6zk1jmbSkqkYooP0en2bxuatzV0sVg261D3lQXTnCuiFc16F9m6ei5dF8AVbfArE74KSooN6qJHXWxQF3-o-8jJNuIB4J-dpSJViv8Apyx6Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933609618</pqid></control><display><type>article</type><title>Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability</title><source>IEEE Xplore (Online service)</source><creator>Zanoni, Enrico ; Santi, Carlo De ; Gao, Zhan ; Buffolo, Matteo ; Fornasier, Mirko ; Saro, Marco ; Pieri, Francesco De ; Rampazzo, Fabiana ; Meneghesso, Gaudenzio ; Meneghini, Matteo ; Zagni, Nicolo ; Chini, Alessandro ; Verzellesi, Giovanni</creator><creatorcontrib>Zanoni, Enrico ; Santi, Carlo De ; Gao, Zhan ; Buffolo, Matteo ; Fornasier, Mirko ; Saro, Marco ; Pieri, Francesco De ; Rampazzo, Fabiana ; Meneghesso, Gaudenzio ; Meneghini, Matteo ; Zagni, Nicolo ; Chini, Alessandro ; Verzellesi, Giovanni</creatorcontrib><description>Application of gallium nitride high-electron-mobility transistors (GaN HEMTs) to millimeter-wave power amplifiers requires gate length scaling below 150 nm: in order to control short-channel effects, the gate-to-channel distance must be decreased, and the device epitaxial structure has to be completely redesigned. A high 2-D electron gas (2DEG) carrier density can be preserved even with a very thin top barrier layer by substituting AlGaN with AlN, InAl(Ga)N, or ScAlN. Moreover, to prevent interaction of hot electrons with compensating impurities and defects in the doped GaN buffer, the latter has to be separated from the channel by a back barrier. Other device designs consist in adopting a graded channel (which controls the electric field) or to adopt nitrogen-polar (N-polar) GaN growth (which decreases the distance between gate and channel, thus attenuating short-channel effects). The aim of this article is to review the various options for controlling short-channel effects, improve off-state characteristics, and reduce drain-source leakage current. Advantages and potential drawbacks of each proposed solution are analyzed in terms of current collapse (CC), dispersion effects, and reliability.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3318564</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitrides ; Barrier layers ; Carrier density ; Deep levels ; Electric fields ; electron device failure physics ; Electron gas ; Gallium nitride ; gallium nitride high-electron-mobility transistors (GaN HEMT) ; Gallium nitrides ; HEMT scaling ; HEMTs ; High electron mobility transistors ; Hot electrons ; Leakage current ; Logic gates ; Microwave transistors ; millimeter wave ; Millimeter waves ; Nitrogen ; Power amplifiers ; Reliability ; Semiconductor devices ; short-channel effects ; Silicon ; Wave power ; Wide band gap semiconductors</subject><ispartof>IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263</citedby><cites>FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263</cites><orcidid>0000-0002-6715-4827 ; 0000-0003-2454-1883 ; 0000-0002-5865-271X ; 0000-0002-9255-6457 ; 0000-0002-0422-2300 ; 0000-0002-8251-0703 ; 0000-0003-2421-505X ; 0000-0002-2418-4831 ; 0000-0001-7349-9656 ; 0000-0001-6064-077X ; 0000-0001-5770-6512 ; 0000-0003-4974-9605 ; 0009-0002-4498-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10274766$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Santi, Carlo De</creatorcontrib><creatorcontrib>Gao, Zhan</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Fornasier, Mirko</creatorcontrib><creatorcontrib>Saro, Marco</creatorcontrib><creatorcontrib>Pieri, Francesco De</creatorcontrib><creatorcontrib>Rampazzo, Fabiana</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><creatorcontrib>Zagni, Nicolo</creatorcontrib><creatorcontrib>Chini, Alessandro</creatorcontrib><creatorcontrib>Verzellesi, Giovanni</creatorcontrib><title>Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Application of gallium nitride high-electron-mobility transistors (GaN HEMTs) to millimeter-wave power amplifiers requires gate length scaling below 150 nm: in order to control short-channel effects, the gate-to-channel distance must be decreased, and the device epitaxial structure has to be completely redesigned. A high 2-D electron gas (2DEG) carrier density can be preserved even with a very thin top barrier layer by substituting AlGaN with AlN, InAl(Ga)N, or ScAlN. Moreover, to prevent interaction of hot electrons with compensating impurities and defects in the doped GaN buffer, the latter has to be separated from the channel by a back barrier. Other device designs consist in adopting a graded channel (which controls the electric field) or to adopt nitrogen-polar (N-polar) GaN growth (which decreases the distance between gate and channel, thus attenuating short-channel effects). The aim of this article is to review the various options for controlling short-channel effects, improve off-state characteristics, and reduce drain-source leakage current. Advantages and potential drawbacks of each proposed solution are analyzed in terms of current collapse (CC), dispersion effects, and reliability.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Barrier layers</subject><subject>Carrier density</subject><subject>Deep levels</subject><subject>Electric fields</subject><subject>electron device failure physics</subject><subject>Electron gas</subject><subject>Gallium nitride</subject><subject>gallium nitride high-electron-mobility transistors (GaN HEMT)</subject><subject>Gallium nitrides</subject><subject>HEMT scaling</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Hot electrons</subject><subject>Leakage current</subject><subject>Logic gates</subject><subject>Microwave transistors</subject><subject>millimeter wave</subject><subject>Millimeter waves</subject><subject>Nitrogen</subject><subject>Power amplifiers</subject><subject>Reliability</subject><subject>Semiconductor devices</subject><subject>short-channel effects</subject><subject>Silicon</subject><subject>Wave power</subject><subject>Wide band gap semiconductors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYm2KvxOzoRIoEgUJihgj1zmDqzQJjsvHzD9OShmYnu7uvXvSD6FjSsaUEn02zy_HjDA-5pxmUokdNKBSpolWQu2iASE0SzTP-D466LplPyoh2AB9z7wNzYd5B2zqEs98VfkVRAjJ82Z3be7wNJ_Nu3N8s2qNjbhxOG99NJ_eVPgxhrWN6wC4qfHjaxNiMnk1dQ0Vzp0DG7sRzqteQ3-fB9O2vn4Z_TY9QOXNwlc-fh2iPWeqDo7-dIiervL5ZJrc3l_fTC5uE8u5iInVmgjLpOQgpdEuy0rKAARxaZpmCyjFwgip0kVWasWkk6zk1jmbSkqkYooP0en2bxuatzV0sVg261D3lQXTnCuiFc16F9m6ei5dF8AVbfArE74KSooN6qJHXWxQF3-o-8jJNuIB4J-dpSJViv8Apyx6Ng</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zanoni, Enrico</creator><creator>Santi, Carlo De</creator><creator>Gao, Zhan</creator><creator>Buffolo, Matteo</creator><creator>Fornasier, Mirko</creator><creator>Saro, Marco</creator><creator>Pieri, Francesco De</creator><creator>Rampazzo, Fabiana</creator><creator>Meneghesso, Gaudenzio</creator><creator>Meneghini, Matteo</creator><creator>Zagni, Nicolo</creator><creator>Chini, Alessandro</creator><creator>Verzellesi, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-2454-1883</orcidid><orcidid>https://orcid.org/0000-0002-5865-271X</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0002-0422-2300</orcidid><orcidid>https://orcid.org/0000-0002-8251-0703</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000-0002-2418-4831</orcidid><orcidid>https://orcid.org/0000-0001-7349-9656</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0001-5770-6512</orcidid><orcidid>https://orcid.org/0000-0003-4974-9605</orcidid><orcidid>https://orcid.org/0009-0002-4498-3187</orcidid></search><sort><creationdate>20240301</creationdate><title>Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability</title><author>Zanoni, Enrico ; Santi, Carlo De ; Gao, Zhan ; Buffolo, Matteo ; Fornasier, Mirko ; Saro, Marco ; Pieri, Francesco De ; Rampazzo, Fabiana ; Meneghesso, Gaudenzio ; Meneghini, Matteo ; Zagni, Nicolo ; Chini, Alessandro ; Verzellesi, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Barrier layers</topic><topic>Carrier density</topic><topic>Deep levels</topic><topic>Electric fields</topic><topic>electron device failure physics</topic><topic>Electron gas</topic><topic>Gallium nitride</topic><topic>gallium nitride high-electron-mobility transistors (GaN HEMT)</topic><topic>Gallium nitrides</topic><topic>HEMT scaling</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Hot electrons</topic><topic>Leakage current</topic><topic>Logic gates</topic><topic>Microwave transistors</topic><topic>millimeter wave</topic><topic>Millimeter waves</topic><topic>Nitrogen</topic><topic>Power amplifiers</topic><topic>Reliability</topic><topic>Semiconductor devices</topic><topic>short-channel effects</topic><topic>Silicon</topic><topic>Wave power</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Santi, Carlo De</creatorcontrib><creatorcontrib>Gao, Zhan</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Fornasier, Mirko</creatorcontrib><creatorcontrib>Saro, Marco</creatorcontrib><creatorcontrib>Pieri, Francesco De</creatorcontrib><creatorcontrib>Rampazzo, Fabiana</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><creatorcontrib>Zagni, Nicolo</creatorcontrib><creatorcontrib>Chini, Alessandro</creatorcontrib><creatorcontrib>Verzellesi, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanoni, Enrico</au><au>Santi, Carlo De</au><au>Gao, Zhan</au><au>Buffolo, Matteo</au><au>Fornasier, Mirko</au><au>Saro, Marco</au><au>Pieri, Francesco De</au><au>Rampazzo, Fabiana</au><au>Meneghesso, Gaudenzio</au><au>Meneghini, Matteo</au><au>Zagni, Nicolo</au><au>Chini, Alessandro</au><au>Verzellesi, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Application of gallium nitride high-electron-mobility transistors (GaN HEMTs) to millimeter-wave power amplifiers requires gate length scaling below 150 nm: in order to control short-channel effects, the gate-to-channel distance must be decreased, and the device epitaxial structure has to be completely redesigned. A high 2-D electron gas (2DEG) carrier density can be preserved even with a very thin top barrier layer by substituting AlGaN with AlN, InAl(Ga)N, or ScAlN. Moreover, to prevent interaction of hot electrons with compensating impurities and defects in the doped GaN buffer, the latter has to be separated from the channel by a back barrier. Other device designs consist in adopting a graded channel (which controls the electric field) or to adopt nitrogen-polar (N-polar) GaN growth (which decreases the distance between gate and channel, thus attenuating short-channel effects). The aim of this article is to review the various options for controlling short-channel effects, improve off-state characteristics, and reduce drain-source leakage current. Advantages and potential drawbacks of each proposed solution are analyzed in terms of current collapse (CC), dispersion effects, and reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3318564</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-2454-1883</orcidid><orcidid>https://orcid.org/0000-0002-5865-271X</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0002-0422-2300</orcidid><orcidid>https://orcid.org/0000-0002-8251-0703</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000-0002-2418-4831</orcidid><orcidid>https://orcid.org/0000-0001-7349-9656</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0001-5770-6512</orcidid><orcidid>https://orcid.org/0000-0003-4974-9605</orcidid><orcidid>https://orcid.org/0009-0002-4498-3187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1-12
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_10274766
source IEEE Xplore (Online service)
subjects Aluminum gallium nitride
Aluminum gallium nitrides
Barrier layers
Carrier density
Deep levels
Electric fields
electron device failure physics
Electron gas
Gallium nitride
gallium nitride high-electron-mobility transistors (GaN HEMT)
Gallium nitrides
HEMT scaling
HEMTs
High electron mobility transistors
Hot electrons
Leakage current
Logic gates
Microwave transistors
millimeter wave
Millimeter waves
Nitrogen
Power amplifiers
Reliability
Semiconductor devices
short-channel effects
Silicon
Wave power
Wide band gap semiconductors
title Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20and%20Millimeter-Wave%20GaN%20HEMTs:%20Impact%20of%20Epitaxial%20Structure%20on%20Short-Channel%20Effects,%20Electron%20Trapping,%20and%20Reliability&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zanoni,%20Enrico&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3318564&rft_dat=%3Cproquest_ieee_%3E2933609618%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-c9904c2553e55a9f88d12ee40f7778bed4ba4567b8d9625f52d3cffc751056263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933609618&rft_id=info:pmid/&rft_ieee_id=10274766&rfr_iscdi=true