Loading…

Deep Learning-Based Joint Channel Coding and Frequency Modulation for Low Power Connectivity

Low-power, low-cost wireless communication is a fundamental requirement of Internet-of-Things (IoT) and massive machine-type communication (mMTC). Various low power connectivity standards such as Bluetooth and LoRa adopt non-coherent frequency modulation schemes as they exhibit significantly lower c...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang, Boxuan, Wang, Chenyu, Kim, Hun-Seok
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1279
container_issue
container_start_page 1274
container_title
container_volume
creator Chang, Boxuan
Wang, Chenyu
Kim, Hun-Seok
description Low-power, low-cost wireless communication is a fundamental requirement of Internet-of-Things (IoT) and massive machine-type communication (mMTC). Various low power connectivity standards such as Bluetooth and LoRa adopt non-coherent frequency modulation schemes as they exhibit significantly lower complexity and power consumption compared to coherent in-phase and quadrature (IQ) modulation schemes. In our paper, we propose a deep learning-based joint channel coding and modulation (JCM) scheme for digitally controlled oscillator (DCO)-based frequency modulation. The learned encoder takes an information bit sequence and produces DCO control samples that represent instantaneous frequency to modulate the radio frequency (RF) signal. The learned decoder recovers/decodes information bits from the received noisy samples without any preamble to assist time and frequency synchronization. We train and test the proposed scheme under significant phase noise and carrier frequency offset (CFO) of the DCO to successfully mitigate these practical impairments at the receiver.
doi_str_mv 10.1109/ICC45041.2023.10278753
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10278753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10278753</ieee_id><sourcerecordid>10278753</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-9c839ab66507d78865b8e6848d60fc61386e45ce8d1d427c3cc930a5405240ac3</originalsourceid><addsrcrecordid>eNo1kN1KwzAcxaMguE3fQCQv0JrvJpcanU4qeqF3wsiSfzVSk9l2jr69BfXqXJwP-B2EzikpKSXmYmWtkETQkhHGS0pYpSvJD9CcSq5VJRQzh2hGDdcF1Zofo3nffxAimeF0hl6vAba4BtelmN6KK9dDwPc5pgHbd5cStNjmMFnYpYCXHXztIPkRP-Swa90Qc8JN7nCd9_gp76Gb0lPJD_E7DuMJOmpc28Ppny7Qy_Lm2d4V9ePtyl7WRWREDIXxmhu3UUqSKlRaK7nRoLTQQZHGKzphgJAedKBBsMpz7w0nTooJQhDn-QKd_e5GAFhvu_jpunH9fwX_AdklUwU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Learning-Based Joint Channel Coding and Frequency Modulation for Low Power Connectivity</title><source>IEEE Xplore All Conference Series</source><creator>Chang, Boxuan ; Wang, Chenyu ; Kim, Hun-Seok</creator><creatorcontrib>Chang, Boxuan ; Wang, Chenyu ; Kim, Hun-Seok</creatorcontrib><description>Low-power, low-cost wireless communication is a fundamental requirement of Internet-of-Things (IoT) and massive machine-type communication (mMTC). Various low power connectivity standards such as Bluetooth and LoRa adopt non-coherent frequency modulation schemes as they exhibit significantly lower complexity and power consumption compared to coherent in-phase and quadrature (IQ) modulation schemes. In our paper, we propose a deep learning-based joint channel coding and modulation (JCM) scheme for digitally controlled oscillator (DCO)-based frequency modulation. The learned encoder takes an information bit sequence and produces DCO control samples that represent instantaneous frequency to modulate the radio frequency (RF) signal. The learned decoder recovers/decodes information bits from the received noisy samples without any preamble to assist time and frequency synchronization. We train and test the proposed scheme under significant phase noise and carrier frequency offset (CFO) of the DCO to successfully mitigate these practical impairments at the receiver.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 1538674629</identifier><identifier>EISBN: 9781538674628</identifier><identifier>DOI: 10.1109/ICC45041.2023.10278753</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep Learning ; Digitally Controlled Oscillator ; Frequency modulation ; GRU ; mMTC ; Phase modulation ; Phase noise ; Power demand ; Receivers ; RF signals ; Wireless communication</subject><ispartof>ICC 2023 - IEEE International Conference on Communications, 2023, p.1274-1279</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10278753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10278753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Boxuan</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Kim, Hun-Seok</creatorcontrib><title>Deep Learning-Based Joint Channel Coding and Frequency Modulation for Low Power Connectivity</title><title>ICC 2023 - IEEE International Conference on Communications</title><addtitle>ICC</addtitle><description>Low-power, low-cost wireless communication is a fundamental requirement of Internet-of-Things (IoT) and massive machine-type communication (mMTC). Various low power connectivity standards such as Bluetooth and LoRa adopt non-coherent frequency modulation schemes as they exhibit significantly lower complexity and power consumption compared to coherent in-phase and quadrature (IQ) modulation schemes. In our paper, we propose a deep learning-based joint channel coding and modulation (JCM) scheme for digitally controlled oscillator (DCO)-based frequency modulation. The learned encoder takes an information bit sequence and produces DCO control samples that represent instantaneous frequency to modulate the radio frequency (RF) signal. The learned decoder recovers/decodes information bits from the received noisy samples without any preamble to assist time and frequency synchronization. We train and test the proposed scheme under significant phase noise and carrier frequency offset (CFO) of the DCO to successfully mitigate these practical impairments at the receiver.</description><subject>Deep Learning</subject><subject>Digitally Controlled Oscillator</subject><subject>Frequency modulation</subject><subject>GRU</subject><subject>mMTC</subject><subject>Phase modulation</subject><subject>Phase noise</subject><subject>Power demand</subject><subject>Receivers</subject><subject>RF signals</subject><subject>Wireless communication</subject><issn>1938-1883</issn><isbn>1538674629</isbn><isbn>9781538674628</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KwzAcxaMguE3fQCQv0JrvJpcanU4qeqF3wsiSfzVSk9l2jr69BfXqXJwP-B2EzikpKSXmYmWtkETQkhHGS0pYpSvJD9CcSq5VJRQzh2hGDdcF1Zofo3nffxAimeF0hl6vAba4BtelmN6KK9dDwPc5pgHbd5cStNjmMFnYpYCXHXztIPkRP-Swa90Qc8JN7nCd9_gp76Gb0lPJD_E7DuMJOmpc28Ppny7Qy_Lm2d4V9ePtyl7WRWREDIXxmhu3UUqSKlRaK7nRoLTQQZHGKzphgJAedKBBsMpz7w0nTooJQhDn-QKd_e5GAFhvu_jpunH9fwX_AdklUwU</recordid><startdate>20230528</startdate><enddate>20230528</enddate><creator>Chang, Boxuan</creator><creator>Wang, Chenyu</creator><creator>Kim, Hun-Seok</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230528</creationdate><title>Deep Learning-Based Joint Channel Coding and Frequency Modulation for Low Power Connectivity</title><author>Chang, Boxuan ; Wang, Chenyu ; Kim, Hun-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-9c839ab66507d78865b8e6848d60fc61386e45ce8d1d427c3cc930a5405240ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>Digitally Controlled Oscillator</topic><topic>Frequency modulation</topic><topic>GRU</topic><topic>mMTC</topic><topic>Phase modulation</topic><topic>Phase noise</topic><topic>Power demand</topic><topic>Receivers</topic><topic>RF signals</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang, Boxuan</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Kim, Hun-Seok</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Boxuan</au><au>Wang, Chenyu</au><au>Kim, Hun-Seok</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Learning-Based Joint Channel Coding and Frequency Modulation for Low Power Connectivity</atitle><btitle>ICC 2023 - IEEE International Conference on Communications</btitle><stitle>ICC</stitle><date>2023-05-28</date><risdate>2023</risdate><spage>1274</spage><epage>1279</epage><pages>1274-1279</pages><eissn>1938-1883</eissn><eisbn>1538674629</eisbn><eisbn>9781538674628</eisbn><abstract>Low-power, low-cost wireless communication is a fundamental requirement of Internet-of-Things (IoT) and massive machine-type communication (mMTC). Various low power connectivity standards such as Bluetooth and LoRa adopt non-coherent frequency modulation schemes as they exhibit significantly lower complexity and power consumption compared to coherent in-phase and quadrature (IQ) modulation schemes. In our paper, we propose a deep learning-based joint channel coding and modulation (JCM) scheme for digitally controlled oscillator (DCO)-based frequency modulation. The learned encoder takes an information bit sequence and produces DCO control samples that represent instantaneous frequency to modulate the radio frequency (RF) signal. The learned decoder recovers/decodes information bits from the received noisy samples without any preamble to assist time and frequency synchronization. We train and test the proposed scheme under significant phase noise and carrier frequency offset (CFO) of the DCO to successfully mitigate these practical impairments at the receiver.</abstract><pub>IEEE</pub><doi>10.1109/ICC45041.2023.10278753</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1883
ispartof ICC 2023 - IEEE International Conference on Communications, 2023, p.1274-1279
issn 1938-1883
language eng
recordid cdi_ieee_primary_10278753
source IEEE Xplore All Conference Series
subjects Deep Learning
Digitally Controlled Oscillator
Frequency modulation
GRU
mMTC
Phase modulation
Phase noise
Power demand
Receivers
RF signals
Wireless communication
title Deep Learning-Based Joint Channel Coding and Frequency Modulation for Low Power Connectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Learning-Based%20Joint%20Channel%20Coding%20and%20Frequency%20Modulation%20for%20Low%20Power%20Connectivity&rft.btitle=ICC%202023%20-%20IEEE%20International%20Conference%20on%20Communications&rft.au=Chang,%20Boxuan&rft.date=2023-05-28&rft.spage=1274&rft.epage=1279&rft.pages=1274-1279&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC45041.2023.10278753&rft.eisbn=1538674629&rft.eisbn_list=9781538674628&rft_dat=%3Cieee_CHZPO%3E10278753%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-9c839ab66507d78865b8e6848d60fc61386e45ce8d1d427c3cc930a5405240ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10278753&rfr_iscdi=true