Loading…
Non-rigid motion estimation based on fuzzy models
Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is descr...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 562 vol.2 |
container_issue | |
container_start_page | 559 |
container_title | |
container_volume | 2 |
creator | Morales, J. Verdu, R. Berenguer, R. Weruaga, L. |
description | Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested. |
doi_str_mv | 10.1109/ICDSP.2002.1028151 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1028151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1028151</ieee_id><sourcerecordid>1028151</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-553a765e9d448e8bedf63e59485f686d14c6e3890548e6f79b3add6fa708e9e13</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkBfckPJJ6TvZ19lHgrFBXU57Jxz8pK20g2PrRf76IdBmYehmFGiEuEFhHc9bK_fX1pO4CuRegINZ6IylmCQmk1SDwTVc5fUKC0ImvPBT6Nu2ZKnynU23FO467mPKet_7ODzxzqYuLP4bAvgcCbfCFOo99kro66EO_3d2_9Y7N6flj2N6smoZVzo7X01mh2QSliGjhEI1k7RToaMgHVh2FJDsoQNtG6QfoQTPQWiB2jXIir_97EzOvvqYya9uvjMfkL7LxDBQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-rigid motion estimation based on fuzzy models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morales, J. ; Verdu, R. ; Berenguer, R. ; Weruaga, L.</creator><creatorcontrib>Morales, J. ; Verdu, R. ; Berenguer, R. ; Weruaga, L.</creatorcontrib><description>Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.</description><identifier>ISBN: 9780780375031</identifier><identifier>ISBN: 0780375033</identifier><identifier>DOI: 10.1109/ICDSP.2002.1028151</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Cost function ; Fuzzy sets ; Image matching ; Image processing ; Interpolation ; Motion estimation ; Parametric statistics ; Phase estimation ; Pixel</subject><ispartof>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.559-562 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1028151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1028151$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morales, J.</creatorcontrib><creatorcontrib>Verdu, R.</creatorcontrib><creatorcontrib>Berenguer, R.</creatorcontrib><creatorcontrib>Weruaga, L.</creatorcontrib><title>Non-rigid motion estimation based on fuzzy models</title><title>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</title><addtitle>ICDSP</addtitle><description>Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.</description><subject>Biomedical imaging</subject><subject>Cost function</subject><subject>Fuzzy sets</subject><subject>Image matching</subject><subject>Image processing</subject><subject>Interpolation</subject><subject>Motion estimation</subject><subject>Parametric statistics</subject><subject>Phase estimation</subject><subject>Pixel</subject><isbn>9780780375031</isbn><isbn>0780375033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT9tKw0AUXBBBqfkBfckPJJ6TvZ19lHgrFBXU57Jxz8pK20g2PrRf76IdBmYehmFGiEuEFhHc9bK_fX1pO4CuRegINZ6IylmCQmk1SDwTVc5fUKC0ImvPBT6Nu2ZKnynU23FO467mPKet_7ODzxzqYuLP4bAvgcCbfCFOo99kro66EO_3d2_9Y7N6flj2N6smoZVzo7X01mh2QSliGjhEI1k7RToaMgHVh2FJDsoQNtG6QfoQTPQWiB2jXIir_97EzOvvqYya9uvjMfkL7LxDBQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Morales, J.</creator><creator>Verdu, R.</creator><creator>Berenguer, R.</creator><creator>Weruaga, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Non-rigid motion estimation based on fuzzy models</title><author>Morales, J. ; Verdu, R. ; Berenguer, R. ; Weruaga, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-553a765e9d448e8bedf63e59485f686d14c6e3890548e6f79b3add6fa708e9e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biomedical imaging</topic><topic>Cost function</topic><topic>Fuzzy sets</topic><topic>Image matching</topic><topic>Image processing</topic><topic>Interpolation</topic><topic>Motion estimation</topic><topic>Parametric statistics</topic><topic>Phase estimation</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Morales, J.</creatorcontrib><creatorcontrib>Verdu, R.</creatorcontrib><creatorcontrib>Berenguer, R.</creatorcontrib><creatorcontrib>Weruaga, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morales, J.</au><au>Verdu, R.</au><au>Berenguer, R.</au><au>Weruaga, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-rigid motion estimation based on fuzzy models</atitle><btitle>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</btitle><stitle>ICDSP</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>559</spage><epage>562 vol.2</epage><pages>559-562 vol.2</pages><isbn>9780780375031</isbn><isbn>0780375033</isbn><abstract>Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2002.1028151</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780375031 |
ispartof | 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.559-562 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1028151 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Cost function Fuzzy sets Image matching Image processing Interpolation Motion estimation Parametric statistics Phase estimation Pixel |
title | Non-rigid motion estimation based on fuzzy models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-rigid%20motion%20estimation%20based%20on%20fuzzy%20models&rft.btitle=2002%2014th%20International%20Conference%20on%20Digital%20Signal%20Processing%20Proceedings.%20DSP%202002%20(Cat.%20No.02TH8628)&rft.au=Morales,%20J.&rft.date=2002&rft.volume=2&rft.spage=559&rft.epage=562%20vol.2&rft.pages=559-562%20vol.2&rft.isbn=9780780375031&rft.isbn_list=0780375033&rft_id=info:doi/10.1109/ICDSP.2002.1028151&rft_dat=%3Cieee_6IE%3E1028151%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-553a765e9d448e8bedf63e59485f686d14c6e3890548e6f79b3add6fa708e9e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1028151&rfr_iscdi=true |