Loading…

Non-rigid motion estimation based on fuzzy models

Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is descr...

Full description

Saved in:
Bibliographic Details
Main Authors: Morales, J., Verdu, R., Berenguer, R., Weruaga, L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 562 vol.2
container_issue
container_start_page 559
container_title
container_volume 2
creator Morales, J.
Verdu, R.
Berenguer, R.
Weruaga, L.
description Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.
doi_str_mv 10.1109/ICDSP.2002.1028151
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1028151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1028151</ieee_id><sourcerecordid>1028151</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-553a765e9d448e8bedf63e59485f686d14c6e3890548e6f79b3add6fa708e9e13</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkBfckPJJ6TvZ19lHgrFBXU57Jxz8pK20g2PrRf76IdBmYehmFGiEuEFhHc9bK_fX1pO4CuRegINZ6IylmCQmk1SDwTVc5fUKC0ImvPBT6Nu2ZKnynU23FO467mPKet_7ODzxzqYuLP4bAvgcCbfCFOo99kro66EO_3d2_9Y7N6flj2N6smoZVzo7X01mh2QSliGjhEI1k7RToaMgHVh2FJDsoQNtG6QfoQTPQWiB2jXIir_97EzOvvqYya9uvjMfkL7LxDBQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-rigid motion estimation based on fuzzy models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morales, J. ; Verdu, R. ; Berenguer, R. ; Weruaga, L.</creator><creatorcontrib>Morales, J. ; Verdu, R. ; Berenguer, R. ; Weruaga, L.</creatorcontrib><description>Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.</description><identifier>ISBN: 9780780375031</identifier><identifier>ISBN: 0780375033</identifier><identifier>DOI: 10.1109/ICDSP.2002.1028151</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Cost function ; Fuzzy sets ; Image matching ; Image processing ; Interpolation ; Motion estimation ; Parametric statistics ; Phase estimation ; Pixel</subject><ispartof>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.559-562 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1028151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1028151$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morales, J.</creatorcontrib><creatorcontrib>Verdu, R.</creatorcontrib><creatorcontrib>Berenguer, R.</creatorcontrib><creatorcontrib>Weruaga, L.</creatorcontrib><title>Non-rigid motion estimation based on fuzzy models</title><title>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</title><addtitle>ICDSP</addtitle><description>Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.</description><subject>Biomedical imaging</subject><subject>Cost function</subject><subject>Fuzzy sets</subject><subject>Image matching</subject><subject>Image processing</subject><subject>Interpolation</subject><subject>Motion estimation</subject><subject>Parametric statistics</subject><subject>Phase estimation</subject><subject>Pixel</subject><isbn>9780780375031</isbn><isbn>0780375033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT9tKw0AUXBBBqfkBfckPJJ6TvZ19lHgrFBXU57Jxz8pK20g2PrRf76IdBmYehmFGiEuEFhHc9bK_fX1pO4CuRegINZ6IylmCQmk1SDwTVc5fUKC0ImvPBT6Nu2ZKnynU23FO467mPKet_7ODzxzqYuLP4bAvgcCbfCFOo99kro66EO_3d2_9Y7N6flj2N6smoZVzo7X01mh2QSliGjhEI1k7RToaMgHVh2FJDsoQNtG6QfoQTPQWiB2jXIir_97EzOvvqYya9uvjMfkL7LxDBQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Morales, J.</creator><creator>Verdu, R.</creator><creator>Berenguer, R.</creator><creator>Weruaga, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Non-rigid motion estimation based on fuzzy models</title><author>Morales, J. ; Verdu, R. ; Berenguer, R. ; Weruaga, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-553a765e9d448e8bedf63e59485f686d14c6e3890548e6f79b3add6fa708e9e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biomedical imaging</topic><topic>Cost function</topic><topic>Fuzzy sets</topic><topic>Image matching</topic><topic>Image processing</topic><topic>Interpolation</topic><topic>Motion estimation</topic><topic>Parametric statistics</topic><topic>Phase estimation</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Morales, J.</creatorcontrib><creatorcontrib>Verdu, R.</creatorcontrib><creatorcontrib>Berenguer, R.</creatorcontrib><creatorcontrib>Weruaga, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morales, J.</au><au>Verdu, R.</au><au>Berenguer, R.</au><au>Weruaga, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-rigid motion estimation based on fuzzy models</atitle><btitle>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</btitle><stitle>ICDSP</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>559</spage><epage>562 vol.2</epage><pages>559-562 vol.2</pages><isbn>9780780375031</isbn><isbn>0780375033</isbn><abstract>Image matching of deformable structures has captured great attention in image processing, and specially in the medical field. This paper proposes a method that faces the ill-posed nature of this problem, by using a cluster-sized similarity cost function, the ambiguity in each similarity map is described by a fuzzy parametric model, and, finally, a spatially non-uniform fuzzy interpolation is used to translate the parametric information into a set of matching field vectors. The method obtains the spatial matching between the two images in a global spatial extent and with sub-pixel accuracy. Results of the method on real images and high non-rigid artificial deformation proves the validity of the approach. Its extension to a volumetric approach is also suggested.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2002.1028151</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780375031
ispartof 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.559-562 vol.2
issn
language eng
recordid cdi_ieee_primary_1028151
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Cost function
Fuzzy sets
Image matching
Image processing
Interpolation
Motion estimation
Parametric statistics
Phase estimation
Pixel
title Non-rigid motion estimation based on fuzzy models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-rigid%20motion%20estimation%20based%20on%20fuzzy%20models&rft.btitle=2002%2014th%20International%20Conference%20on%20Digital%20Signal%20Processing%20Proceedings.%20DSP%202002%20(Cat.%20No.02TH8628)&rft.au=Morales,%20J.&rft.date=2002&rft.volume=2&rft.spage=559&rft.epage=562%20vol.2&rft.pages=559-562%20vol.2&rft.isbn=9780780375031&rft.isbn_list=0780375033&rft_id=info:doi/10.1109/ICDSP.2002.1028151&rft_dat=%3Cieee_6IE%3E1028151%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-553a765e9d448e8bedf63e59485f686d14c6e3890548e6f79b3add6fa708e9e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1028151&rfr_iscdi=true