Loading…
On the use of PCA in GMM and AR-vector models for text independent speaker verification
This paper examines the role of the principal components analysis (PCA) on the performance of two classification systems for text independent speaker verification: the Gaussian mixture model (GMM) and the AR-vector model. The use of the PCA transform resulted in an improvement in the performance of...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 598 vol.2 |
container_issue | |
container_start_page | 595 |
container_title | |
container_volume | 2 |
creator | de Lima, C.B. Alcaim, A. Apolinario, J.A. |
description | This paper examines the role of the principal components analysis (PCA) on the performance of two classification systems for text independent speaker verification: the Gaussian mixture model (GMM) and the AR-vector model. The use of the PCA transform resulted in an improvement in the performance of the GMM for training times of 60 s and 30 s. However, the advantage of using PCA was not observed for the AR-vector model. For the case of 10 s training time, there was no benefit in using PCA even with GMM. In this situation, the AR-vector is superior for a 10 s test and worse for a 3 s test. In this latter case, however, all systems yielded error rates above 7%. |
doi_str_mv | 10.1109/ICDSP.2002.1028160 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1028160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1028160</ieee_id><sourcerecordid>1028160</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7441b3c8127b2a3a1ae51847a1c5563d2eda1edf64ab50058a6e639a1aa8bace3</originalsourceid><addsrcrecordid>eNotT21LwzAYDIigzP4B_ZI_0JonaZr0Y6k6BxsbvuDH8bR9itGtHU0c7t8bcMdxdx-Og2PsFkQGIMr7Rf3wusmkEDIDIS0U4oIlpbEiUhktFFyxxPsvEZHr3BpzzT7WAw-fxH888bHnm7ribuDz1Yrj0PHqJT1SG8aJ78eOdp73MQb6DbHU0YGiDIH7A-E3TfxIk-tdi8GNww277HHnKTn7jL0_Pb7Vz-lyPV_U1TJ1YHRITZ5Do1oL0jQSFQKSBpsbhFbrQnWSOgTq-iLHRguhLRZUqDL20DbYkpqxu_9dR0Tbw-T2OJ225_vqD4-lT-Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the use of PCA in GMM and AR-vector models for text independent speaker verification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Lima, C.B. ; Alcaim, A. ; Apolinario, J.A.</creator><creatorcontrib>de Lima, C.B. ; Alcaim, A. ; Apolinario, J.A.</creatorcontrib><description>This paper examines the role of the principal components analysis (PCA) on the performance of two classification systems for text independent speaker verification: the Gaussian mixture model (GMM) and the AR-vector model. The use of the PCA transform resulted in an improvement in the performance of the GMM for training times of 60 s and 30 s. However, the advantage of using PCA was not observed for the AR-vector model. For the case of 10 s training time, there was no benefit in using PCA even with GMM. In this situation, the AR-vector is superior for a 10 s test and worse for a 3 s test. In this latter case, however, all systems yielded error rates above 7%.</description><identifier>ISBN: 9780780375031</identifier><identifier>ISBN: 0780375033</identifier><identifier>DOI: 10.1109/ICDSP.2002.1028160</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Error analysis ; Hidden Markov models ; Loudspeakers ; Principal component analysis ; Speaker recognition ; Speech ; Telephony ; Testing ; Training data</subject><ispartof>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.595-598 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1028160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1028160$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Lima, C.B.</creatorcontrib><creatorcontrib>Alcaim, A.</creatorcontrib><creatorcontrib>Apolinario, J.A.</creatorcontrib><title>On the use of PCA in GMM and AR-vector models for text independent speaker verification</title><title>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</title><addtitle>ICDSP</addtitle><description>This paper examines the role of the principal components analysis (PCA) on the performance of two classification systems for text independent speaker verification: the Gaussian mixture model (GMM) and the AR-vector model. The use of the PCA transform resulted in an improvement in the performance of the GMM for training times of 60 s and 30 s. However, the advantage of using PCA was not observed for the AR-vector model. For the case of 10 s training time, there was no benefit in using PCA even with GMM. In this situation, the AR-vector is superior for a 10 s test and worse for a 3 s test. In this latter case, however, all systems yielded error rates above 7%.</description><subject>Covariance matrix</subject><subject>Error analysis</subject><subject>Hidden Markov models</subject><subject>Loudspeakers</subject><subject>Principal component analysis</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>Telephony</subject><subject>Testing</subject><subject>Training data</subject><isbn>9780780375031</isbn><isbn>0780375033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT21LwzAYDIigzP4B_ZI_0JonaZr0Y6k6BxsbvuDH8bR9itGtHU0c7t8bcMdxdx-Og2PsFkQGIMr7Rf3wusmkEDIDIS0U4oIlpbEiUhktFFyxxPsvEZHr3BpzzT7WAw-fxH888bHnm7ribuDz1Yrj0PHqJT1SG8aJ78eOdp73MQb6DbHU0YGiDIH7A-E3TfxIk-tdi8GNww277HHnKTn7jL0_Pb7Vz-lyPV_U1TJ1YHRITZ5Do1oL0jQSFQKSBpsbhFbrQnWSOgTq-iLHRguhLRZUqDL20DbYkpqxu_9dR0Tbw-T2OJ225_vqD4-lT-Y</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>de Lima, C.B.</creator><creator>Alcaim, A.</creator><creator>Apolinario, J.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>On the use of PCA in GMM and AR-vector models for text independent speaker verification</title><author>de Lima, C.B. ; Alcaim, A. ; Apolinario, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7441b3c8127b2a3a1ae51847a1c5563d2eda1edf64ab50058a6e639a1aa8bace3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Covariance matrix</topic><topic>Error analysis</topic><topic>Hidden Markov models</topic><topic>Loudspeakers</topic><topic>Principal component analysis</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>Telephony</topic><topic>Testing</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>de Lima, C.B.</creatorcontrib><creatorcontrib>Alcaim, A.</creatorcontrib><creatorcontrib>Apolinario, J.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Lima, C.B.</au><au>Alcaim, A.</au><au>Apolinario, J.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the use of PCA in GMM and AR-vector models for text independent speaker verification</atitle><btitle>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</btitle><stitle>ICDSP</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>595</spage><epage>598 vol.2</epage><pages>595-598 vol.2</pages><isbn>9780780375031</isbn><isbn>0780375033</isbn><abstract>This paper examines the role of the principal components analysis (PCA) on the performance of two classification systems for text independent speaker verification: the Gaussian mixture model (GMM) and the AR-vector model. The use of the PCA transform resulted in an improvement in the performance of the GMM for training times of 60 s and 30 s. However, the advantage of using PCA was not observed for the AR-vector model. For the case of 10 s training time, there was no benefit in using PCA even with GMM. In this situation, the AR-vector is superior for a 10 s test and worse for a 3 s test. In this latter case, however, all systems yielded error rates above 7%.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2002.1028160</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780375031 |
ispartof | 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.595-598 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1028160 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Covariance matrix Error analysis Hidden Markov models Loudspeakers Principal component analysis Speaker recognition Speech Telephony Testing Training data |
title | On the use of PCA in GMM and AR-vector models for text independent speaker verification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20use%20of%20PCA%20in%20GMM%20and%20AR-vector%20models%20for%20text%20independent%20speaker%20verification&rft.btitle=2002%2014th%20International%20Conference%20on%20Digital%20Signal%20Processing%20Proceedings.%20DSP%202002%20(Cat.%20No.02TH8628)&rft.au=de%20Lima,%20C.B.&rft.date=2002&rft.volume=2&rft.spage=595&rft.epage=598%20vol.2&rft.pages=595-598%20vol.2&rft.isbn=9780780375031&rft.isbn_list=0780375033&rft_id=info:doi/10.1109/ICDSP.2002.1028160&rft_dat=%3Cieee_6IE%3E1028160%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7441b3c8127b2a3a1ae51847a1c5563d2eda1edf64ab50058a6e639a1aa8bace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1028160&rfr_iscdi=true |