Loading…

Evaluating the Relative Contribution of Photosystems I and II for Leaf Nitrogen Estimation Using Fractional Depth of Fraunhofer Lines and SIF Derived From Sub-Nanometer Airborne Hyperspectral Imagery

Integrating far-red solar-induced chlorophyll fluorescence (SIF 760 ) and leaf biochemical constituents (primarily leaf chlorophyll content (C a+b )) has recently been demonstrated to improve the estimation of leaf nitrogen (N) concentration from airborne and spaceborne hyperspectral imagery in homo...

Full description

Saved in:
Bibliographic Details
Main Authors: Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2822
container_issue
container_start_page 2819
container_title
container_volume
creator Belwalkar, A.
Poblete, T.
Hornero, A.
Zarco-Tejada, P.J.
description Integrating far-red solar-induced chlorophyll fluorescence (SIF 760 ) and leaf biochemical constituents (primarily leaf chlorophyll content (C a+b )) has recently been demonstrated to improve the estimation of leaf nitrogen (N) concentration from airborne and spaceborne hyperspectral imagery in homogenous and heterogeneous crop canopies. The advent of sub-nanometer resolution imagers capable of detecting narrow solar Fraunhofer lines (FLs) has enabled a novel opportunity to investigate the prospect of leaf N estimation using individual FLs in addition to SIF 760 and C a+b traits. This study seeks to determine whether incorporating distinct FL depth derived from sub-nanometer airborne hyperspectral imagery could improve leaf N estimates. A sub-nanometer hyperspectral imager with ≤0.2 nm full-width at half-maximum (FWHM) resolution was flown in tandem with a narrow-band hyperspectral imager with 5.8 nm FWHM over a winter wheat field. Plots were fertilized with variable concentrations of nitrogen to enable nutrient variability. Regression models utilizing Gaussian process regression (GPR) were built with different permutations of SIF, C a+b and depths of individual FLs for estimating leaf N concentration. Laboratory-determined leaf N estimates were obtained by destructive sampling. Results show that GPR models incorporating the depth of distinct Fraunhofer lines as predictor variables performed better than the benchmark model constructed using C a+b and SIF 760 alone. The best leaf N-estimation model built with FLs from the red and far-red regions (C a+b , FL 682.97 nm , FL 757.002 nm ) yielded an R 2 of 0.71, outperforming the standard approach used in previous works (C a+b , SIF 760 ) (R 2 = 0.56).
doi_str_mv 10.1109/IGARSS52108.2023.10281680
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10281680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10281680</ieee_id><sourcerecordid>10281680</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-2354b66478a17ad2e199f51ce8952e80cb3ab27e3e6a37579b75c96d61e965573</originalsourceid><addsrcrecordid>eNo1kN1OAjEQhauJiYi8gRf1ARb7Q7fbS4L8bELUgFyT7jILNWxL2kLCE_paFtSrmTM555vMIPRMSZ9Sol7K6XCxXApGSdFnhPE-JaygeUFuUE9JVXBBOCOUyFvUYVTwTBLC79FDCF-pKRghHfQ9Pun9UUdjtzjuAC9gn8QJ8MjZ6E11jMZZ7Br8sXPRhXOI0AZcYm03uCxx4zyeg27wm4nebcHicYim1dfUKlyoE6_ri9R7_AqHuLvA0uxod66BlDYWwhW3LCfJ4dPyTTK4Fi-PVfamrWshJuPQ-Mp5C3h2PoAPB6ijT8yy1Vvw50d01-h9gN5f7aLVZPw5mmXz92k5Gs4zw8ggZoyLQZXnA1loKvWGAVWqEbSGQgkGBakrrismgUOuuRRSVVLUKt_kFFQuhORd9PTLNQCwPvh0qz-v_x_PfwBLcXvc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluating the Relative Contribution of Photosystems I and II for Leaf Nitrogen Estimation Using Fractional Depth of Fraunhofer Lines and SIF Derived From Sub-Nanometer Airborne Hyperspectral Imagery</title><source>IEEE Xplore All Conference Series</source><creator>Belwalkar, A. ; Poblete, T. ; Hornero, A. ; Zarco-Tejada, P.J.</creator><creatorcontrib>Belwalkar, A. ; Poblete, T. ; Hornero, A. ; Zarco-Tejada, P.J.</creatorcontrib><description>Integrating far-red solar-induced chlorophyll fluorescence (SIF 760 ) and leaf biochemical constituents (primarily leaf chlorophyll content (C a+b )) has recently been demonstrated to improve the estimation of leaf nitrogen (N) concentration from airborne and spaceborne hyperspectral imagery in homogenous and heterogeneous crop canopies. The advent of sub-nanometer resolution imagers capable of detecting narrow solar Fraunhofer lines (FLs) has enabled a novel opportunity to investigate the prospect of leaf N estimation using individual FLs in addition to SIF 760 and C a+b traits. This study seeks to determine whether incorporating distinct FL depth derived from sub-nanometer airborne hyperspectral imagery could improve leaf N estimates. A sub-nanometer hyperspectral imager with ≤0.2 nm full-width at half-maximum (FWHM) resolution was flown in tandem with a narrow-band hyperspectral imager with 5.8 nm FWHM over a winter wheat field. Plots were fertilized with variable concentrations of nitrogen to enable nutrient variability. Regression models utilizing Gaussian process regression (GPR) were built with different permutations of SIF, C a+b and depths of individual FLs for estimating leaf N concentration. Laboratory-determined leaf N estimates were obtained by destructive sampling. Results show that GPR models incorporating the depth of distinct Fraunhofer lines as predictor variables performed better than the benchmark model constructed using C a+b and SIF 760 alone. The best leaf N-estimation model built with FLs from the red and far-red regions (C a+b , FL 682.97 nm , FL 757.002 nm ) yielded an R 2 of 0.71, outperforming the standard approach used in previous works (C a+b , SIF 760 ) (R 2 = 0.56).</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350320107</identifier><identifier>DOI: 10.1109/IGARSS52108.2023.10281680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne ; Estimation ; Fraunhofer lines ; GPR ; Hyperspectral ; Image resolution ; leaf Nitrogen ; Nitrogen ; Physiology ; Predictive models ; Sensors ; SIF ; sub-nanometer ; Vegetation mapping</subject><ispartof>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, p.2819-2822</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10281680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,27912,54542,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10281680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Belwalkar, A.</creatorcontrib><creatorcontrib>Poblete, T.</creatorcontrib><creatorcontrib>Hornero, A.</creatorcontrib><creatorcontrib>Zarco-Tejada, P.J.</creatorcontrib><title>Evaluating the Relative Contribution of Photosystems I and II for Leaf Nitrogen Estimation Using Fractional Depth of Fraunhofer Lines and SIF Derived From Sub-Nanometer Airborne Hyperspectral Imagery</title><title>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Integrating far-red solar-induced chlorophyll fluorescence (SIF 760 ) and leaf biochemical constituents (primarily leaf chlorophyll content (C a+b )) has recently been demonstrated to improve the estimation of leaf nitrogen (N) concentration from airborne and spaceborne hyperspectral imagery in homogenous and heterogeneous crop canopies. The advent of sub-nanometer resolution imagers capable of detecting narrow solar Fraunhofer lines (FLs) has enabled a novel opportunity to investigate the prospect of leaf N estimation using individual FLs in addition to SIF 760 and C a+b traits. This study seeks to determine whether incorporating distinct FL depth derived from sub-nanometer airborne hyperspectral imagery could improve leaf N estimates. A sub-nanometer hyperspectral imager with ≤0.2 nm full-width at half-maximum (FWHM) resolution was flown in tandem with a narrow-band hyperspectral imager with 5.8 nm FWHM over a winter wheat field. Plots were fertilized with variable concentrations of nitrogen to enable nutrient variability. Regression models utilizing Gaussian process regression (GPR) were built with different permutations of SIF, C a+b and depths of individual FLs for estimating leaf N concentration. Laboratory-determined leaf N estimates were obtained by destructive sampling. Results show that GPR models incorporating the depth of distinct Fraunhofer lines as predictor variables performed better than the benchmark model constructed using C a+b and SIF 760 alone. The best leaf N-estimation model built with FLs from the red and far-red regions (C a+b , FL 682.97 nm , FL 757.002 nm ) yielded an R 2 of 0.71, outperforming the standard approach used in previous works (C a+b , SIF 760 ) (R 2 = 0.56).</description><subject>Airborne</subject><subject>Estimation</subject><subject>Fraunhofer lines</subject><subject>GPR</subject><subject>Hyperspectral</subject><subject>Image resolution</subject><subject>leaf Nitrogen</subject><subject>Nitrogen</subject><subject>Physiology</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>SIF</subject><subject>sub-nanometer</subject><subject>Vegetation mapping</subject><issn>2153-7003</issn><isbn>9798350320107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1OAjEQhauJiYi8gRf1ARb7Q7fbS4L8bELUgFyT7jILNWxL2kLCE_paFtSrmTM555vMIPRMSZ9Sol7K6XCxXApGSdFnhPE-JaygeUFuUE9JVXBBOCOUyFvUYVTwTBLC79FDCF-pKRghHfQ9Pun9UUdjtzjuAC9gn8QJ8MjZ6E11jMZZ7Br8sXPRhXOI0AZcYm03uCxx4zyeg27wm4nebcHicYim1dfUKlyoE6_ri9R7_AqHuLvA0uxod66BlDYWwhW3LCfJ4dPyTTK4Fi-PVfamrWshJuPQ-Mp5C3h2PoAPB6ijT8yy1Vvw50d01-h9gN5f7aLVZPw5mmXz92k5Gs4zw8ggZoyLQZXnA1loKvWGAVWqEbSGQgkGBakrrismgUOuuRRSVVLUKt_kFFQuhORd9PTLNQCwPvh0qz-v_x_PfwBLcXvc</recordid><startdate>20230716</startdate><enddate>20230716</enddate><creator>Belwalkar, A.</creator><creator>Poblete, T.</creator><creator>Hornero, A.</creator><creator>Zarco-Tejada, P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230716</creationdate><title>Evaluating the Relative Contribution of Photosystems I and II for Leaf Nitrogen Estimation Using Fractional Depth of Fraunhofer Lines and SIF Derived From Sub-Nanometer Airborne Hyperspectral Imagery</title><author>Belwalkar, A. ; Poblete, T. ; Hornero, A. ; Zarco-Tejada, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-2354b66478a17ad2e199f51ce8952e80cb3ab27e3e6a37579b75c96d61e965573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne</topic><topic>Estimation</topic><topic>Fraunhofer lines</topic><topic>GPR</topic><topic>Hyperspectral</topic><topic>Image resolution</topic><topic>leaf Nitrogen</topic><topic>Nitrogen</topic><topic>Physiology</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>SIF</topic><topic>sub-nanometer</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Belwalkar, A.</creatorcontrib><creatorcontrib>Poblete, T.</creatorcontrib><creatorcontrib>Hornero, A.</creatorcontrib><creatorcontrib>Zarco-Tejada, P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Belwalkar, A.</au><au>Poblete, T.</au><au>Hornero, A.</au><au>Zarco-Tejada, P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluating the Relative Contribution of Photosystems I and II for Leaf Nitrogen Estimation Using Fractional Depth of Fraunhofer Lines and SIF Derived From Sub-Nanometer Airborne Hyperspectral Imagery</atitle><btitle>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2023-07-16</date><risdate>2023</risdate><spage>2819</spage><epage>2822</epage><pages>2819-2822</pages><eissn>2153-7003</eissn><eisbn>9798350320107</eisbn><abstract>Integrating far-red solar-induced chlorophyll fluorescence (SIF 760 ) and leaf biochemical constituents (primarily leaf chlorophyll content (C a+b )) has recently been demonstrated to improve the estimation of leaf nitrogen (N) concentration from airborne and spaceborne hyperspectral imagery in homogenous and heterogeneous crop canopies. The advent of sub-nanometer resolution imagers capable of detecting narrow solar Fraunhofer lines (FLs) has enabled a novel opportunity to investigate the prospect of leaf N estimation using individual FLs in addition to SIF 760 and C a+b traits. This study seeks to determine whether incorporating distinct FL depth derived from sub-nanometer airborne hyperspectral imagery could improve leaf N estimates. A sub-nanometer hyperspectral imager with ≤0.2 nm full-width at half-maximum (FWHM) resolution was flown in tandem with a narrow-band hyperspectral imager with 5.8 nm FWHM over a winter wheat field. Plots were fertilized with variable concentrations of nitrogen to enable nutrient variability. Regression models utilizing Gaussian process regression (GPR) were built with different permutations of SIF, C a+b and depths of individual FLs for estimating leaf N concentration. Laboratory-determined leaf N estimates were obtained by destructive sampling. Results show that GPR models incorporating the depth of distinct Fraunhofer lines as predictor variables performed better than the benchmark model constructed using C a+b and SIF 760 alone. The best leaf N-estimation model built with FLs from the red and far-red regions (C a+b , FL 682.97 nm , FL 757.002 nm ) yielded an R 2 of 0.71, outperforming the standard approach used in previous works (C a+b , SIF 760 ) (R 2 = 0.56).</abstract><pub>IEEE</pub><doi>10.1109/IGARSS52108.2023.10281680</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, p.2819-2822
issn 2153-7003
language eng
recordid cdi_ieee_primary_10281680
source IEEE Xplore All Conference Series
subjects Airborne
Estimation
Fraunhofer lines
GPR
Hyperspectral
Image resolution
leaf Nitrogen
Nitrogen
Physiology
Predictive models
Sensors
SIF
sub-nanometer
Vegetation mapping
title Evaluating the Relative Contribution of Photosystems I and II for Leaf Nitrogen Estimation Using Fractional Depth of Fraunhofer Lines and SIF Derived From Sub-Nanometer Airborne Hyperspectral Imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluating%20the%20Relative%20Contribution%20of%20Photosystems%20I%20and%20II%20for%20Leaf%20Nitrogen%20Estimation%20Using%20Fractional%20Depth%20of%20Fraunhofer%20Lines%20and%20SIF%20Derived%20From%20Sub-Nanometer%20Airborne%20Hyperspectral%20Imagery&rft.btitle=IGARSS%202023%20-%202023%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Belwalkar,%20A.&rft.date=2023-07-16&rft.spage=2819&rft.epage=2822&rft.pages=2819-2822&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS52108.2023.10281680&rft.eisbn=9798350320107&rft_dat=%3Cieee_CHZPO%3E10281680%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-2354b66478a17ad2e199f51ce8952e80cb3ab27e3e6a37579b75c96d61e965573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10281680&rfr_iscdi=true