Loading…

Impact of Training Data Size on Classifiers When Coarse Resolution Imageries Were Used for Regional Land Cover Mapping

This work analyzes the impacts of training sample size on the performance of supervised classification methods when coarse resolution imageries are employed for regional land cover mapping. We utilized FegnYun-3C composite imageries with 1km spatial resolution and random forest (RF) and support vect...

Full description

Saved in:
Bibliographic Details
Main Authors: Adugna, Tesfaye, Jia, Haitao, Xu, Wenbo, Luo, Xin, Fan, Jinlong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7287
container_issue
container_start_page 7284
container_title
container_volume
creator Adugna, Tesfaye
Jia, Haitao
Xu, Wenbo
Luo, Xin
Fan, Jinlong
description This work analyzes the impacts of training sample size on the performance of supervised classification methods when coarse resolution imageries are employed for regional land cover mapping. We utilized FegnYun-3C composite imageries with 1km spatial resolution and random forest (RF) and support vector machine (SVM) algorithms that were trained and tested with five sets of reference datasets: 66/34, 69/31, 73/27, 76/24 and 79/21.The results show that the performance of the two algorithms increases with increasing the size of the training examples until a certain point, and achieves the maximum accuracy (0.86 for RF and 0.84 for SVM) when the ratio was 76/24. However, considering the 79/21 (train/test) ratio made no change in accuracy, implying increasing a training dataset beyond a certain limit has no effect. Moreover, despite the size of training samples employed, the RF outperformed the SVM in contrary to the claim that SVM yields a better accuracy in case of scarce training data by pervious studies.
doi_str_mv 10.1109/IGARSS52108.2023.10282481
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10282481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10282481</ieee_id><sourcerecordid>10282481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-31b0d533ad66b9fbf4c97ad40adc2a401ed0978133be3013baed083d74fc5e7a3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQhVdBsNa-gRfrA6TO7iRNclmq1kBF6A9elkl2UlfSJOzGgn16F9SrGc755hwYIe4VTJWC_KFYztebTaIVZFMNGqcKdKbjTF2ISZ7mGSaAGhSkl2KkVYJRCoDX4sb7z7BkGmAkTsWxp2qQXS23jmxr24N8pIHkxp5Zdq1cNOS9rS07L98_OAgdOc9yzb5rvgYbkOJIB3aWA8CO5c6zkXXnAnIINjVyRa0Jdyd28pX6PnTciquaGs-TvzkWu-en7eIlWr0ti8V8FVkN8RChKsEkiGRmszKvyzqu8pRMDGQqTTEoNpCnmUIsGUFhSUHI0KRxXSWcEo7F3W-uZeZ97-yR3Pf-_0_4AxX9Xr4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Impact of Training Data Size on Classifiers When Coarse Resolution Imageries Were Used for Regional Land Cover Mapping</title><source>IEEE Xplore All Conference Series</source><creator>Adugna, Tesfaye ; Jia, Haitao ; Xu, Wenbo ; Luo, Xin ; Fan, Jinlong</creator><creatorcontrib>Adugna, Tesfaye ; Jia, Haitao ; Xu, Wenbo ; Luo, Xin ; Fan, Jinlong</creatorcontrib><description>This work analyzes the impacts of training sample size on the performance of supervised classification methods when coarse resolution imageries are employed for regional land cover mapping. We utilized FegnYun-3C composite imageries with 1km spatial resolution and random forest (RF) and support vector machine (SVM) algorithms that were trained and tested with five sets of reference datasets: 66/34, 69/31, 73/27, 76/24 and 79/21.The results show that the performance of the two algorithms increases with increasing the size of the training examples until a certain point, and achieves the maximum accuracy (0.86 for RF and 0.84 for SVM) when the ratio was 76/24. However, considering the 79/21 (train/test) ratio made no change in accuracy, implying increasing a training dataset beyond a certain limit has no effect. Moreover, despite the size of training samples employed, the RF outperformed the SVM in contrary to the claim that SVM yields a better accuracy in case of scarce training data by pervious studies.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350320107</identifier><identifier>DOI: 10.1109/IGARSS52108.2023.10282481</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Coarse resolution ; FegnYun-3C VIRR ; Geoscience and remote sensing ; Random forests ; Spatial resolution ; Support vector machines ; SVM ; Training ; Training data ; training data size</subject><ispartof>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, p.7284-7287</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10282481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10282481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adugna, Tesfaye</creatorcontrib><creatorcontrib>Jia, Haitao</creatorcontrib><creatorcontrib>Xu, Wenbo</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Fan, Jinlong</creatorcontrib><title>Impact of Training Data Size on Classifiers When Coarse Resolution Imageries Were Used for Regional Land Cover Mapping</title><title>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>This work analyzes the impacts of training sample size on the performance of supervised classification methods when coarse resolution imageries are employed for regional land cover mapping. We utilized FegnYun-3C composite imageries with 1km spatial resolution and random forest (RF) and support vector machine (SVM) algorithms that were trained and tested with five sets of reference datasets: 66/34, 69/31, 73/27, 76/24 and 79/21.The results show that the performance of the two algorithms increases with increasing the size of the training examples until a certain point, and achieves the maximum accuracy (0.86 for RF and 0.84 for SVM) when the ratio was 76/24. However, considering the 79/21 (train/test) ratio made no change in accuracy, implying increasing a training dataset beyond a certain limit has no effect. Moreover, despite the size of training samples employed, the RF outperformed the SVM in contrary to the claim that SVM yields a better accuracy in case of scarce training data by pervious studies.</description><subject>Classification algorithms</subject><subject>Coarse resolution</subject><subject>FegnYun-3C VIRR</subject><subject>Geoscience and remote sensing</subject><subject>Random forests</subject><subject>Spatial resolution</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Training</subject><subject>Training data</subject><subject>training data size</subject><issn>2153-7003</issn><isbn>9798350320107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AQhVdBsNa-gRfrA6TO7iRNclmq1kBF6A9elkl2UlfSJOzGgn16F9SrGc755hwYIe4VTJWC_KFYztebTaIVZFMNGqcKdKbjTF2ISZ7mGSaAGhSkl2KkVYJRCoDX4sb7z7BkGmAkTsWxp2qQXS23jmxr24N8pIHkxp5Zdq1cNOS9rS07L98_OAgdOc9yzb5rvgYbkOJIB3aWA8CO5c6zkXXnAnIINjVyRa0Jdyd28pX6PnTciquaGs-TvzkWu-en7eIlWr0ti8V8FVkN8RChKsEkiGRmszKvyzqu8pRMDGQqTTEoNpCnmUIsGUFhSUHI0KRxXSWcEo7F3W-uZeZ97-yR3Pf-_0_4AxX9Xr4</recordid><startdate>20230716</startdate><enddate>20230716</enddate><creator>Adugna, Tesfaye</creator><creator>Jia, Haitao</creator><creator>Xu, Wenbo</creator><creator>Luo, Xin</creator><creator>Fan, Jinlong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230716</creationdate><title>Impact of Training Data Size on Classifiers When Coarse Resolution Imageries Were Used for Regional Land Cover Mapping</title><author>Adugna, Tesfaye ; Jia, Haitao ; Xu, Wenbo ; Luo, Xin ; Fan, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-31b0d533ad66b9fbf4c97ad40adc2a401ed0978133be3013baed083d74fc5e7a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification algorithms</topic><topic>Coarse resolution</topic><topic>FegnYun-3C VIRR</topic><topic>Geoscience and remote sensing</topic><topic>Random forests</topic><topic>Spatial resolution</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Training</topic><topic>Training data</topic><topic>training data size</topic><toplevel>online_resources</toplevel><creatorcontrib>Adugna, Tesfaye</creatorcontrib><creatorcontrib>Jia, Haitao</creatorcontrib><creatorcontrib>Xu, Wenbo</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Fan, Jinlong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adugna, Tesfaye</au><au>Jia, Haitao</au><au>Xu, Wenbo</au><au>Luo, Xin</au><au>Fan, Jinlong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of Training Data Size on Classifiers When Coarse Resolution Imageries Were Used for Regional Land Cover Mapping</atitle><btitle>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2023-07-16</date><risdate>2023</risdate><spage>7284</spage><epage>7287</epage><pages>7284-7287</pages><eissn>2153-7003</eissn><eisbn>9798350320107</eisbn><abstract>This work analyzes the impacts of training sample size on the performance of supervised classification methods when coarse resolution imageries are employed for regional land cover mapping. We utilized FegnYun-3C composite imageries with 1km spatial resolution and random forest (RF) and support vector machine (SVM) algorithms that were trained and tested with five sets of reference datasets: 66/34, 69/31, 73/27, 76/24 and 79/21.The results show that the performance of the two algorithms increases with increasing the size of the training examples until a certain point, and achieves the maximum accuracy (0.86 for RF and 0.84 for SVM) when the ratio was 76/24. However, considering the 79/21 (train/test) ratio made no change in accuracy, implying increasing a training dataset beyond a certain limit has no effect. Moreover, despite the size of training samples employed, the RF outperformed the SVM in contrary to the claim that SVM yields a better accuracy in case of scarce training data by pervious studies.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS52108.2023.10282481</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, p.7284-7287
issn 2153-7003
language eng
recordid cdi_ieee_primary_10282481
source IEEE Xplore All Conference Series
subjects Classification algorithms
Coarse resolution
FegnYun-3C VIRR
Geoscience and remote sensing
Random forests
Spatial resolution
Support vector machines
SVM
Training
Training data
training data size
title Impact of Training Data Size on Classifiers When Coarse Resolution Imageries Were Used for Regional Land Cover Mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20Training%20Data%20Size%20on%20Classifiers%20When%20Coarse%20Resolution%20Imageries%20Were%20Used%20for%20Regional%20Land%20Cover%20Mapping&rft.btitle=IGARSS%202023%20-%202023%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Adugna,%20Tesfaye&rft.date=2023-07-16&rft.spage=7284&rft.epage=7287&rft.pages=7284-7287&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS52108.2023.10282481&rft.eisbn=9798350320107&rft_dat=%3Cieee_CHZPO%3E10282481%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-31b0d533ad66b9fbf4c97ad40adc2a401ed0978133be3013baed083d74fc5e7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10282481&rfr_iscdi=true