Loading…

Spatiotemporal Pattern of Mangrove Forests in Bulacan Using Satellite Data Fusion Method and Machine Learning

The Philippines' mangrove forests offer numerous ecosystem goods, services, and protection to coastal populations. However, in 2018, illegal and massive mangrove cutting within the areas of Bulacan was reported that caused mangrove extent changes across the province. In 2020, an initiative to p...

Full description

Saved in:
Bibliographic Details
Main Authors: Aperocho, Aaron Anthony, Chan, Stephen Raphael, Mangali, Juan Miguel, Orpeza, Richmond James Marthy, Purio, Mark Angelo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6735
container_issue
container_start_page 6732
container_title
container_volume
creator Aperocho, Aaron Anthony
Chan, Stephen Raphael
Mangali, Juan Miguel
Orpeza, Richmond James Marthy
Purio, Mark Angelo
description The Philippines' mangrove forests offer numerous ecosystem goods, services, and protection to coastal populations. However, in 2018, illegal and massive mangrove cutting within the areas of Bulacan was reported that caused mangrove extent changes across the province. In 2020, an initiative to plant mangrove seedlings over 76 hectares in Bulacan was taken to address perennial flooding in the villages affected by deforestation. Although mangrove cover maps for the country already exist, analysis of mangrove cover changes was limited by the challenge of acquiring cloud-free optical satellite data. This study aims to assess the spatial distribution of mangrove forests in the province of Bulacan using the combination of different bands of Landsat-8 and Sentinel-1 images arranged in time series from 2016 to 2020. A machine learning algorithm will be used to classify the images into two classes - mangroves and non-mangroves. The resultant mangrove forest maps will be used to assist the decision-making processes for rehabilitation and conservation efforts currently needed to protect and restore the mangrove forests in Bulacan province.
doi_str_mv 10.1109/IGARSS52108.2023.10283459
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10283459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10283459</ieee_id><sourcerecordid>10283459</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-78772db0eff26e91dfb2630d5c2deb1489b03e9149f9076643be30c8daa193dc3</originalsourceid><addsrcrecordid>eNo1kFFPwjAUhauJiYj8Ax_qDxjettu6PiIKkkA0Tp7J3XoHNaMjXTHx37tEfTonJ_m-h8PYvYCpEGAeVsvZe1lmUkAxlSDVVIAsVJqZCzYx2hQqAyVBgL5kIykylWgAdc1u-v5zKIUEGLFjecLoukjHUxew5W8YIwXPu4Zv0O9D90V80QXqY8-d54_nFmv0fNs7v-clRmpbF4k_YUS-OPeu83xD8dBZjt4OivrgPPE1YfADccuuGmx7mvzlmG0Xzx_zl2T9ulzNZ-vECZXGRBdaS1sBNY3MyQjbVDJXYLNaWqpEWpgK1LCnpjGg8zxVFSmoC4sojLK1GrO7X68jot0puCOG793_PeoH9-Fbzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatiotemporal Pattern of Mangrove Forests in Bulacan Using Satellite Data Fusion Method and Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Aperocho, Aaron Anthony ; Chan, Stephen Raphael ; Mangali, Juan Miguel ; Orpeza, Richmond James Marthy ; Purio, Mark Angelo</creator><creatorcontrib>Aperocho, Aaron Anthony ; Chan, Stephen Raphael ; Mangali, Juan Miguel ; Orpeza, Richmond James Marthy ; Purio, Mark Angelo</creatorcontrib><description>The Philippines' mangrove forests offer numerous ecosystem goods, services, and protection to coastal populations. However, in 2018, illegal and massive mangrove cutting within the areas of Bulacan was reported that caused mangrove extent changes across the province. In 2020, an initiative to plant mangrove seedlings over 76 hectares in Bulacan was taken to address perennial flooding in the villages affected by deforestation. Although mangrove cover maps for the country already exist, analysis of mangrove cover changes was limited by the challenge of acquiring cloud-free optical satellite data. This study aims to assess the spatial distribution of mangrove forests in the province of Bulacan using the combination of different bands of Landsat-8 and Sentinel-1 images arranged in time series from 2016 to 2020. A machine learning algorithm will be used to classify the images into two classes - mangroves and non-mangroves. The resultant mangrove forest maps will be used to assist the decision-making processes for rehabilitation and conservation efforts currently needed to protect and restore the mangrove forests in Bulacan province.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9798350320107</identifier><identifier>DOI: 10.1109/IGARSS52108.2023.10283459</identifier><language>eng</language><publisher>IEEE</publisher><subject>Machine learning algorithms ; Mangroves ; Optical ; Optical imaging ; Remote Sensing ; SAR ; Satellites ; Sea measurements ; Sociology ; Time series analysis ; Tropical cyclones</subject><ispartof>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, p.6732-6735</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10283459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10283459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aperocho, Aaron Anthony</creatorcontrib><creatorcontrib>Chan, Stephen Raphael</creatorcontrib><creatorcontrib>Mangali, Juan Miguel</creatorcontrib><creatorcontrib>Orpeza, Richmond James Marthy</creatorcontrib><creatorcontrib>Purio, Mark Angelo</creatorcontrib><title>Spatiotemporal Pattern of Mangrove Forests in Bulacan Using Satellite Data Fusion Method and Machine Learning</title><title>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The Philippines' mangrove forests offer numerous ecosystem goods, services, and protection to coastal populations. However, in 2018, illegal and massive mangrove cutting within the areas of Bulacan was reported that caused mangrove extent changes across the province. In 2020, an initiative to plant mangrove seedlings over 76 hectares in Bulacan was taken to address perennial flooding in the villages affected by deforestation. Although mangrove cover maps for the country already exist, analysis of mangrove cover changes was limited by the challenge of acquiring cloud-free optical satellite data. This study aims to assess the spatial distribution of mangrove forests in the province of Bulacan using the combination of different bands of Landsat-8 and Sentinel-1 images arranged in time series from 2016 to 2020. A machine learning algorithm will be used to classify the images into two classes - mangroves and non-mangroves. The resultant mangrove forest maps will be used to assist the decision-making processes for rehabilitation and conservation efforts currently needed to protect and restore the mangrove forests in Bulacan province.</description><subject>Machine learning algorithms</subject><subject>Mangroves</subject><subject>Optical</subject><subject>Optical imaging</subject><subject>Remote Sensing</subject><subject>SAR</subject><subject>Satellites</subject><subject>Sea measurements</subject><subject>Sociology</subject><subject>Time series analysis</subject><subject>Tropical cyclones</subject><issn>2153-7003</issn><isbn>9798350320107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kFFPwjAUhauJiYj8Ax_qDxjettu6PiIKkkA0Tp7J3XoHNaMjXTHx37tEfTonJ_m-h8PYvYCpEGAeVsvZe1lmUkAxlSDVVIAsVJqZCzYx2hQqAyVBgL5kIykylWgAdc1u-v5zKIUEGLFjecLoukjHUxew5W8YIwXPu4Zv0O9D90V80QXqY8-d54_nFmv0fNs7v-clRmpbF4k_YUS-OPeu83xD8dBZjt4OivrgPPE1YfADccuuGmx7mvzlmG0Xzx_zl2T9ulzNZ-vECZXGRBdaS1sBNY3MyQjbVDJXYLNaWqpEWpgK1LCnpjGg8zxVFSmoC4sojLK1GrO7X68jot0puCOG793_PeoH9-Fbzg</recordid><startdate>20230716</startdate><enddate>20230716</enddate><creator>Aperocho, Aaron Anthony</creator><creator>Chan, Stephen Raphael</creator><creator>Mangali, Juan Miguel</creator><creator>Orpeza, Richmond James Marthy</creator><creator>Purio, Mark Angelo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230716</creationdate><title>Spatiotemporal Pattern of Mangrove Forests in Bulacan Using Satellite Data Fusion Method and Machine Learning</title><author>Aperocho, Aaron Anthony ; Chan, Stephen Raphael ; Mangali, Juan Miguel ; Orpeza, Richmond James Marthy ; Purio, Mark Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-78772db0eff26e91dfb2630d5c2deb1489b03e9149f9076643be30c8daa193dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Machine learning algorithms</topic><topic>Mangroves</topic><topic>Optical</topic><topic>Optical imaging</topic><topic>Remote Sensing</topic><topic>SAR</topic><topic>Satellites</topic><topic>Sea measurements</topic><topic>Sociology</topic><topic>Time series analysis</topic><topic>Tropical cyclones</topic><toplevel>online_resources</toplevel><creatorcontrib>Aperocho, Aaron Anthony</creatorcontrib><creatorcontrib>Chan, Stephen Raphael</creatorcontrib><creatorcontrib>Mangali, Juan Miguel</creatorcontrib><creatorcontrib>Orpeza, Richmond James Marthy</creatorcontrib><creatorcontrib>Purio, Mark Angelo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aperocho, Aaron Anthony</au><au>Chan, Stephen Raphael</au><au>Mangali, Juan Miguel</au><au>Orpeza, Richmond James Marthy</au><au>Purio, Mark Angelo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatiotemporal Pattern of Mangrove Forests in Bulacan Using Satellite Data Fusion Method and Machine Learning</atitle><btitle>IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2023-07-16</date><risdate>2023</risdate><spage>6732</spage><epage>6735</epage><pages>6732-6735</pages><eissn>2153-7003</eissn><eisbn>9798350320107</eisbn><abstract>The Philippines' mangrove forests offer numerous ecosystem goods, services, and protection to coastal populations. However, in 2018, illegal and massive mangrove cutting within the areas of Bulacan was reported that caused mangrove extent changes across the province. In 2020, an initiative to plant mangrove seedlings over 76 hectares in Bulacan was taken to address perennial flooding in the villages affected by deforestation. Although mangrove cover maps for the country already exist, analysis of mangrove cover changes was limited by the challenge of acquiring cloud-free optical satellite data. This study aims to assess the spatial distribution of mangrove forests in the province of Bulacan using the combination of different bands of Landsat-8 and Sentinel-1 images arranged in time series from 2016 to 2020. A machine learning algorithm will be used to classify the images into two classes - mangroves and non-mangroves. The resultant mangrove forest maps will be used to assist the decision-making processes for rehabilitation and conservation efforts currently needed to protect and restore the mangrove forests in Bulacan province.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS52108.2023.10283459</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, p.6732-6735
issn 2153-7003
language eng
recordid cdi_ieee_primary_10283459
source IEEE Xplore All Conference Series
subjects Machine learning algorithms
Mangroves
Optical
Optical imaging
Remote Sensing
SAR
Satellites
Sea measurements
Sociology
Time series analysis
Tropical cyclones
title Spatiotemporal Pattern of Mangrove Forests in Bulacan Using Satellite Data Fusion Method and Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatiotemporal%20Pattern%20of%20Mangrove%20Forests%20in%20Bulacan%20Using%20Satellite%20Data%20Fusion%20Method%20and%20Machine%20Learning&rft.btitle=IGARSS%202023%20-%202023%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Aperocho,%20Aaron%20Anthony&rft.date=2023-07-16&rft.spage=6732&rft.epage=6735&rft.pages=6732-6735&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS52108.2023.10283459&rft.eisbn=9798350320107&rft_dat=%3Cieee_CHZPO%3E10283459%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-78772db0eff26e91dfb2630d5c2deb1489b03e9149f9076643be30c8daa193dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10283459&rfr_iscdi=true