Loading…
Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine
Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead wei...
Saved in:
Published in: | IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8136-8143 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263 |
container_end_page | 8143 |
container_issue | 12 |
container_start_page | 8136 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Long, Yongzhou Zhang, Zhuang Xu, Zhuowei Gu, Enlin Lu, Qiujie Wang, Hao Chen, Genliang |
description | Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping. |
doi_str_mv | 10.1109/LRA.2023.3325714 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10287554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287554</ieee_id><sourcerecordid>2884893190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EElXpzsBgiTnFjziOx1JKQQoC8RwtJ7mmrtok2AkV_55U6dDlPqTz3SsdhC4pmVJK1E32OpsywviUcyYkjU_QiHEpIy6T5PRoPkeTENaEECqY5EqM0FPmvlftDvYVm6rEL_UOvO02-NMUXbeN7rz7hQovvWsa8PjLtSt862pXhcZ5KPFiY0LrCvzWuAou0Jk1mwCTQx-jj_vF-_whyp6Xj_NZFhVMsTZK4jiJaUyMUVyQkqqc5owTm5TAcmtlYfs9F6ByIQoDhSSUU1YSUEoRzhI-RtfD3cbXPx2EVq_rzlf9S83SNE4Vpz04RmSgCl-H4MHqxrut8X-aEr33pntveu9NH7z1kash4gDgCGepFCLm__pFaD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893190</pqid></control><display><type>article</type><title>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</title><source>IEEE Xplore (Online service)</source><creator>Long, Yongzhou ; Zhang, Zhuang ; Xu, Zhuowei ; Gu, Enlin ; Lu, Qiujie ; Wang, Hao ; Chen, Genliang</creator><creatorcontrib>Long, Yongzhou ; Zhang, Zhuang ; Xu, Zhuowei ; Gu, Enlin ; Lu, Qiujie ; Wang, Hao ; Chen, Genliang</creatorcontrib><description>Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3325714</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bending ; End effectors ; Fatigue strength ; Fingers ; Grasping ; Grasping force ; Grippers ; grippers and other end-effectors ; Kinematics ; Lightweight ; Modulus of elasticity ; Robotics ; Soft robot materials and design ; Soft robotics ; Soft sensors ; soft sensors and actuators ; Static models</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8136-8143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</citedby><cites>FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</cites><orcidid>0000-0001-8507-4735 ; 0000-0002-3834-3477 ; 0000-0002-1011-2116 ; 0009-0008-0617-8332 ; 0000-0001-8581-2021 ; 0009-0002-1661-1351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Long, Yongzhou</creatorcontrib><creatorcontrib>Zhang, Zhuang</creatorcontrib><creatorcontrib>Xu, Zhuowei</creatorcontrib><creatorcontrib>Gu, Enlin</creatorcontrib><creatorcontrib>Lu, Qiujie</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Chen, Genliang</creatorcontrib><title>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.</description><subject>Bending</subject><subject>End effectors</subject><subject>Fatigue strength</subject><subject>Fingers</subject><subject>Grasping</subject><subject>Grasping force</subject><subject>Grippers</subject><subject>grippers and other end-effectors</subject><subject>Kinematics</subject><subject>Lightweight</subject><subject>Modulus of elasticity</subject><subject>Robotics</subject><subject>Soft robot materials and design</subject><subject>Soft robotics</subject><subject>Soft sensors</subject><subject>soft sensors and actuators</subject><subject>Static models</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAURi0EElXpzsBgiTnFjziOx1JKQQoC8RwtJ7mmrtok2AkV_55U6dDlPqTz3SsdhC4pmVJK1E32OpsywviUcyYkjU_QiHEpIy6T5PRoPkeTENaEECqY5EqM0FPmvlftDvYVm6rEL_UOvO02-NMUXbeN7rz7hQovvWsa8PjLtSt862pXhcZ5KPFiY0LrCvzWuAou0Jk1mwCTQx-jj_vF-_whyp6Xj_NZFhVMsTZK4jiJaUyMUVyQkqqc5owTm5TAcmtlYfs9F6ByIQoDhSSUU1YSUEoRzhI-RtfD3cbXPx2EVq_rzlf9S83SNE4Vpz04RmSgCl-H4MHqxrut8X-aEr33pntveu9NH7z1kash4gDgCGepFCLm__pFaD0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Long, Yongzhou</creator><creator>Zhang, Zhuang</creator><creator>Xu, Zhuowei</creator><creator>Gu, Enlin</creator><creator>Lu, Qiujie</creator><creator>Wang, Hao</creator><creator>Chen, Genliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8507-4735</orcidid><orcidid>https://orcid.org/0000-0002-3834-3477</orcidid><orcidid>https://orcid.org/0000-0002-1011-2116</orcidid><orcidid>https://orcid.org/0009-0008-0617-8332</orcidid><orcidid>https://orcid.org/0000-0001-8581-2021</orcidid><orcidid>https://orcid.org/0009-0002-1661-1351</orcidid></search><sort><creationdate>20231201</creationdate><title>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</title><author>Long, Yongzhou ; Zhang, Zhuang ; Xu, Zhuowei ; Gu, Enlin ; Lu, Qiujie ; Wang, Hao ; Chen, Genliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bending</topic><topic>End effectors</topic><topic>Fatigue strength</topic><topic>Fingers</topic><topic>Grasping</topic><topic>Grasping force</topic><topic>Grippers</topic><topic>grippers and other end-effectors</topic><topic>Kinematics</topic><topic>Lightweight</topic><topic>Modulus of elasticity</topic><topic>Robotics</topic><topic>Soft robot materials and design</topic><topic>Soft robotics</topic><topic>Soft sensors</topic><topic>soft sensors and actuators</topic><topic>Static models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yongzhou</creatorcontrib><creatorcontrib>Zhang, Zhuang</creatorcontrib><creatorcontrib>Xu, Zhuowei</creatorcontrib><creatorcontrib>Gu, Enlin</creatorcontrib><creatorcontrib>Lu, Qiujie</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Chen, Genliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yongzhou</au><au>Zhang, Zhuang</au><au>Xu, Zhuowei</au><au>Gu, Enlin</au><au>Lu, Qiujie</au><au>Wang, Hao</au><au>Chen, Genliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8136</spage><epage>8143</epage><pages>8136-8143</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3325714</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8507-4735</orcidid><orcidid>https://orcid.org/0000-0002-3834-3477</orcidid><orcidid>https://orcid.org/0000-0002-1011-2116</orcidid><orcidid>https://orcid.org/0009-0008-0617-8332</orcidid><orcidid>https://orcid.org/0000-0001-8581-2021</orcidid><orcidid>https://orcid.org/0009-0002-1661-1351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8136-8143 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10287554 |
source | IEEE Xplore (Online service) |
subjects | Bending End effectors Fatigue strength Fingers Grasping Grasping force Grippers grippers and other end-effectors Kinematics Lightweight Modulus of elasticity Robotics Soft robot materials and design Soft robotics Soft sensors soft sensors and actuators Static models |
title | Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20and%20Powerful%20Vacuum-Driven%20Gripper%20With%20Bioinspired%20Elastic%20Spine&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Long,%20Yongzhou&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8136&rft.epage=8143&rft.pages=8136-8143&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3325714&rft_dat=%3Cproquest_ieee_%3E2884893190%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884893190&rft_id=info:pmid/&rft_ieee_id=10287554&rfr_iscdi=true |