Loading…

Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine

Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead wei...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8136-8143
Main Authors: Long, Yongzhou, Zhang, Zhuang, Xu, Zhuowei, Gu, Enlin, Lu, Qiujie, Wang, Hao, Chen, Genliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263
cites cdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263
container_end_page 8143
container_issue 12
container_start_page 8136
container_title IEEE robotics and automation letters
container_volume 8
creator Long, Yongzhou
Zhang, Zhuang
Xu, Zhuowei
Gu, Enlin
Lu, Qiujie
Wang, Hao
Chen, Genliang
description Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.
doi_str_mv 10.1109/LRA.2023.3325714
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10287554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287554</ieee_id><sourcerecordid>2884893190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EElXpzsBgiTnFjziOx1JKQQoC8RwtJ7mmrtok2AkV_55U6dDlPqTz3SsdhC4pmVJK1E32OpsywviUcyYkjU_QiHEpIy6T5PRoPkeTENaEECqY5EqM0FPmvlftDvYVm6rEL_UOvO02-NMUXbeN7rz7hQovvWsa8PjLtSt862pXhcZ5KPFiY0LrCvzWuAou0Jk1mwCTQx-jj_vF-_whyp6Xj_NZFhVMsTZK4jiJaUyMUVyQkqqc5owTm5TAcmtlYfs9F6ByIQoDhSSUU1YSUEoRzhI-RtfD3cbXPx2EVq_rzlf9S83SNE4Vpz04RmSgCl-H4MHqxrut8X-aEr33pntveu9NH7z1kash4gDgCGepFCLm__pFaD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893190</pqid></control><display><type>article</type><title>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</title><source>IEEE Xplore (Online service)</source><creator>Long, Yongzhou ; Zhang, Zhuang ; Xu, Zhuowei ; Gu, Enlin ; Lu, Qiujie ; Wang, Hao ; Chen, Genliang</creator><creatorcontrib>Long, Yongzhou ; Zhang, Zhuang ; Xu, Zhuowei ; Gu, Enlin ; Lu, Qiujie ; Wang, Hao ; Chen, Genliang</creatorcontrib><description>Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3325714</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bending ; End effectors ; Fatigue strength ; Fingers ; Grasping ; Grasping force ; Grippers ; grippers and other end-effectors ; Kinematics ; Lightweight ; Modulus of elasticity ; Robotics ; Soft robot materials and design ; Soft robotics ; Soft sensors ; soft sensors and actuators ; Static models</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8136-8143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</citedby><cites>FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</cites><orcidid>0000-0001-8507-4735 ; 0000-0002-3834-3477 ; 0000-0002-1011-2116 ; 0009-0008-0617-8332 ; 0000-0001-8581-2021 ; 0009-0002-1661-1351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Long, Yongzhou</creatorcontrib><creatorcontrib>Zhang, Zhuang</creatorcontrib><creatorcontrib>Xu, Zhuowei</creatorcontrib><creatorcontrib>Gu, Enlin</creatorcontrib><creatorcontrib>Lu, Qiujie</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Chen, Genliang</creatorcontrib><title>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.</description><subject>Bending</subject><subject>End effectors</subject><subject>Fatigue strength</subject><subject>Fingers</subject><subject>Grasping</subject><subject>Grasping force</subject><subject>Grippers</subject><subject>grippers and other end-effectors</subject><subject>Kinematics</subject><subject>Lightweight</subject><subject>Modulus of elasticity</subject><subject>Robotics</subject><subject>Soft robot materials and design</subject><subject>Soft robotics</subject><subject>Soft sensors</subject><subject>soft sensors and actuators</subject><subject>Static models</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAURi0EElXpzsBgiTnFjziOx1JKQQoC8RwtJ7mmrtok2AkV_55U6dDlPqTz3SsdhC4pmVJK1E32OpsywviUcyYkjU_QiHEpIy6T5PRoPkeTENaEECqY5EqM0FPmvlftDvYVm6rEL_UOvO02-NMUXbeN7rz7hQovvWsa8PjLtSt862pXhcZ5KPFiY0LrCvzWuAou0Jk1mwCTQx-jj_vF-_whyp6Xj_NZFhVMsTZK4jiJaUyMUVyQkqqc5owTm5TAcmtlYfs9F6ByIQoDhSSUU1YSUEoRzhI-RtfD3cbXPx2EVq_rzlf9S83SNE4Vpz04RmSgCl-H4MHqxrut8X-aEr33pntveu9NH7z1kash4gDgCGepFCLm__pFaD0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Long, Yongzhou</creator><creator>Zhang, Zhuang</creator><creator>Xu, Zhuowei</creator><creator>Gu, Enlin</creator><creator>Lu, Qiujie</creator><creator>Wang, Hao</creator><creator>Chen, Genliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8507-4735</orcidid><orcidid>https://orcid.org/0000-0002-3834-3477</orcidid><orcidid>https://orcid.org/0000-0002-1011-2116</orcidid><orcidid>https://orcid.org/0009-0008-0617-8332</orcidid><orcidid>https://orcid.org/0000-0001-8581-2021</orcidid><orcidid>https://orcid.org/0009-0002-1661-1351</orcidid></search><sort><creationdate>20231201</creationdate><title>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</title><author>Long, Yongzhou ; Zhang, Zhuang ; Xu, Zhuowei ; Gu, Enlin ; Lu, Qiujie ; Wang, Hao ; Chen, Genliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bending</topic><topic>End effectors</topic><topic>Fatigue strength</topic><topic>Fingers</topic><topic>Grasping</topic><topic>Grasping force</topic><topic>Grippers</topic><topic>grippers and other end-effectors</topic><topic>Kinematics</topic><topic>Lightweight</topic><topic>Modulus of elasticity</topic><topic>Robotics</topic><topic>Soft robot materials and design</topic><topic>Soft robotics</topic><topic>Soft sensors</topic><topic>soft sensors and actuators</topic><topic>Static models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yongzhou</creatorcontrib><creatorcontrib>Zhang, Zhuang</creatorcontrib><creatorcontrib>Xu, Zhuowei</creatorcontrib><creatorcontrib>Gu, Enlin</creatorcontrib><creatorcontrib>Lu, Qiujie</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Chen, Genliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yongzhou</au><au>Zhang, Zhuang</au><au>Xu, Zhuowei</au><au>Gu, Enlin</au><au>Lu, Qiujie</au><au>Wang, Hao</au><au>Chen, Genliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8136</spage><epage>8143</epage><pages>8136-8143</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Vacuum-driven soft grippers are drawing increasing attention in robotics due to their flexibility and adaptability, similar to conventional soft grippers driven by positive pressure. Although better durability and failure safety have been demonstrated, current designs still suffer from high dead weight and limited load-carrying capabilities. In this letter, we present a vacuum-driven gripper consisting of unstretchable fabric chambers and bioinspired elastic spines, capable of compliant, rapid, and powerful grasping. The proposed gripper performs the characteristics of lightweight, high repeatability, and good fatigue resistance. It can exert a maximum grasping force of over 50 N and securely grasp objects of various sizes and shapes, including fast-moving objects. A kinematic model and a quasi-static model are further developed to precisely control the bending angle of the finger, enabling free switching between compliant grasping and squeezing of objects for various application requirements. The proposed design method enriches the field of soft grippers with a simple and replicable approach for achieving safe but high-performance grasping.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3325714</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8507-4735</orcidid><orcidid>https://orcid.org/0000-0002-3834-3477</orcidid><orcidid>https://orcid.org/0000-0002-1011-2116</orcidid><orcidid>https://orcid.org/0009-0008-0617-8332</orcidid><orcidid>https://orcid.org/0000-0001-8581-2021</orcidid><orcidid>https://orcid.org/0009-0002-1661-1351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8136-8143
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10287554
source IEEE Xplore (Online service)
subjects Bending
End effectors
Fatigue strength
Fingers
Grasping
Grasping force
Grippers
grippers and other end-effectors
Kinematics
Lightweight
Modulus of elasticity
Robotics
Soft robot materials and design
Soft robotics
Soft sensors
soft sensors and actuators
Static models
title Lightweight and Powerful Vacuum-Driven Gripper With Bioinspired Elastic Spine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20and%20Powerful%20Vacuum-Driven%20Gripper%20With%20Bioinspired%20Elastic%20Spine&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Long,%20Yongzhou&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8136&rft.epage=8143&rft.pages=8136-8143&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3325714&rft_dat=%3Cproquest_ieee_%3E2884893190%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-64464140aa9350d19b1b230f6de2bff7cf1b2b5e9b55caec701312d0e99903263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884893190&rft_id=info:pmid/&rft_ieee_id=10287554&rfr_iscdi=true