Loading…

Phase-locked states in a spiking neural network model with a context-dependent connectivity

In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal....

Full description

Saved in:
Bibliographic Details
Main Authors: Makovkin, Sergey, Kastalskiy, Innokentiy, Gordleeva, Susanna
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 185
container_issue
container_start_page 182
container_title
container_volume
creator Makovkin, Sergey
Kastalskiy, Innokentiy
Gordleeva, Susanna
description In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.
doi_str_mv 10.1109/DCNA59899.2023.10290547
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10290547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10290547</ieee_id><sourcerecordid>10290547</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-8bd8a42ba24f16afb5fe634e4bdfecb6175f5b9bc16b58108256f0978b4232f53</originalsourceid><addsrcrecordid>eNo1kMtKAzEYRqMgWLRvIJgXmPrnNkmWpV6hqAsFwUVJZv7Y2GmmTKK1b29FXR34OHyLQ8g5gwljYC8uZ_dTZY21Ew5cTBhwC0rqAzK22hqhQIDSsj4kI641VFrKl2MyzvkdAAQHCRpG5PVx6TJWXd-ssKW5uIKZxkQdzZu4iumNJvwYXLdH2fbDiq77Fju6jWW5d5o-FfwqVYsbTC2m8rMkbEr8jGV3So6C6zKO_3hCnq-vnma31fzh5m42nVeRMVsq41vjJPeOy8BqF7wKWAuJ0rcBG18zrYLy1jes9sowMFzVAaw2XnLBgxIn5Oz3NyLiYjPEtRt2i_8e4huc1VaF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Phase-locked states in a spiking neural network model with a context-dependent connectivity</title><source>IEEE Xplore All Conference Series</source><creator>Makovkin, Sergey ; Kastalskiy, Innokentiy ; Gordleeva, Susanna</creator><creatorcontrib>Makovkin, Sergey ; Kastalskiy, Innokentiy ; Gordleeva, Susanna</creatorcontrib><description>In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.</description><identifier>EISSN: 2770-744X</identifier><identifier>EISBN: 9798350305746</identifier><identifier>DOI: 10.1109/DCNA59899.2023.10290547</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Clustering algorithms ; Hebb's rule ; Image recognition ; Mathematical models ; Neural network ; Neural networks ; Neuron ; Neurons ; Phase-locking ; Synaptic connectivity ; Topology</subject><ispartof>2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 2023, p.182-185</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10290547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10290547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Makovkin, Sergey</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Gordleeva, Susanna</creatorcontrib><title>Phase-locked states in a spiking neural network model with a context-dependent connectivity</title><title>2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA)</title><addtitle>DCNA</addtitle><description>In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.</description><subject>Biological system modeling</subject><subject>Clustering algorithms</subject><subject>Hebb's rule</subject><subject>Image recognition</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Neuron</subject><subject>Neurons</subject><subject>Phase-locking</subject><subject>Synaptic connectivity</subject><subject>Topology</subject><issn>2770-744X</issn><isbn>9798350305746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKAzEYRqMgWLRvIJgXmPrnNkmWpV6hqAsFwUVJZv7Y2GmmTKK1b29FXR34OHyLQ8g5gwljYC8uZ_dTZY21Ew5cTBhwC0rqAzK22hqhQIDSsj4kI641VFrKl2MyzvkdAAQHCRpG5PVx6TJWXd-ssKW5uIKZxkQdzZu4iumNJvwYXLdH2fbDiq77Fju6jWW5d5o-FfwqVYsbTC2m8rMkbEr8jGV3So6C6zKO_3hCnq-vnma31fzh5m42nVeRMVsq41vjJPeOy8BqF7wKWAuJ0rcBG18zrYLy1jes9sowMFzVAaw2XnLBgxIn5Oz3NyLiYjPEtRt2i_8e4huc1VaF</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Makovkin, Sergey</creator><creator>Kastalskiy, Innokentiy</creator><creator>Gordleeva, Susanna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230918</creationdate><title>Phase-locked states in a spiking neural network model with a context-dependent connectivity</title><author>Makovkin, Sergey ; Kastalskiy, Innokentiy ; Gordleeva, Susanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-8bd8a42ba24f16afb5fe634e4bdfecb6175f5b9bc16b58108256f0978b4232f53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological system modeling</topic><topic>Clustering algorithms</topic><topic>Hebb's rule</topic><topic>Image recognition</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Neuron</topic><topic>Neurons</topic><topic>Phase-locking</topic><topic>Synaptic connectivity</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Makovkin, Sergey</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Gordleeva, Susanna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makovkin, Sergey</au><au>Kastalskiy, Innokentiy</au><au>Gordleeva, Susanna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Phase-locked states in a spiking neural network model with a context-dependent connectivity</atitle><btitle>2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA)</btitle><stitle>DCNA</stitle><date>2023-09-18</date><risdate>2023</risdate><spage>182</spage><epage>185</epage><pages>182-185</pages><eissn>2770-744X</eissn><eisbn>9798350305746</eisbn><abstract>In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.</abstract><pub>IEEE</pub><doi>10.1109/DCNA59899.2023.10290547</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2770-744X
ispartof 2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 2023, p.182-185
issn 2770-744X
language eng
recordid cdi_ieee_primary_10290547
source IEEE Xplore All Conference Series
subjects Biological system modeling
Clustering algorithms
Hebb's rule
Image recognition
Mathematical models
Neural network
Neural networks
Neuron
Neurons
Phase-locking
Synaptic connectivity
Topology
title Phase-locked states in a spiking neural network model with a context-dependent connectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Phase-locked%20states%20in%20a%20spiking%20neural%20network%20model%20with%20a%20context-dependent%20connectivity&rft.btitle=2023%207th%20Scientific%20School%20Dynamics%20of%20Complex%20Networks%20and%20their%20Applications%20(DCNA)&rft.au=Makovkin,%20Sergey&rft.date=2023-09-18&rft.spage=182&rft.epage=185&rft.pages=182-185&rft.eissn=2770-744X&rft_id=info:doi/10.1109/DCNA59899.2023.10290547&rft.eisbn=9798350305746&rft_dat=%3Cieee_CHZPO%3E10290547%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-8bd8a42ba24f16afb5fe634e4bdfecb6175f5b9bc16b58108256f0978b4232f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10290547&rfr_iscdi=true