Loading…
Phase-locked states in a spiking neural network model with a context-dependent connectivity
In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal....
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 185 |
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | |
creator | Makovkin, Sergey Kastalskiy, Innokentiy Gordleeva, Susanna |
description | In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons. |
doi_str_mv | 10.1109/DCNA59899.2023.10290547 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10290547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10290547</ieee_id><sourcerecordid>10290547</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-8bd8a42ba24f16afb5fe634e4bdfecb6175f5b9bc16b58108256f0978b4232f53</originalsourceid><addsrcrecordid>eNo1kMtKAzEYRqMgWLRvIJgXmPrnNkmWpV6hqAsFwUVJZv7Y2GmmTKK1b29FXR34OHyLQ8g5gwljYC8uZ_dTZY21Ew5cTBhwC0rqAzK22hqhQIDSsj4kI641VFrKl2MyzvkdAAQHCRpG5PVx6TJWXd-ssKW5uIKZxkQdzZu4iumNJvwYXLdH2fbDiq77Fju6jWW5d5o-FfwqVYsbTC2m8rMkbEr8jGV3So6C6zKO_3hCnq-vnma31fzh5m42nVeRMVsq41vjJPeOy8BqF7wKWAuJ0rcBG18zrYLy1jes9sowMFzVAaw2XnLBgxIn5Oz3NyLiYjPEtRt2i_8e4huc1VaF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Phase-locked states in a spiking neural network model with a context-dependent connectivity</title><source>IEEE Xplore All Conference Series</source><creator>Makovkin, Sergey ; Kastalskiy, Innokentiy ; Gordleeva, Susanna</creator><creatorcontrib>Makovkin, Sergey ; Kastalskiy, Innokentiy ; Gordleeva, Susanna</creatorcontrib><description>In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.</description><identifier>EISSN: 2770-744X</identifier><identifier>EISBN: 9798350305746</identifier><identifier>DOI: 10.1109/DCNA59899.2023.10290547</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Clustering algorithms ; Hebb's rule ; Image recognition ; Mathematical models ; Neural network ; Neural networks ; Neuron ; Neurons ; Phase-locking ; Synaptic connectivity ; Topology</subject><ispartof>2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 2023, p.182-185</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10290547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10290547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Makovkin, Sergey</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Gordleeva, Susanna</creatorcontrib><title>Phase-locked states in a spiking neural network model with a context-dependent connectivity</title><title>2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA)</title><addtitle>DCNA</addtitle><description>In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.</description><subject>Biological system modeling</subject><subject>Clustering algorithms</subject><subject>Hebb's rule</subject><subject>Image recognition</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Neuron</subject><subject>Neurons</subject><subject>Phase-locking</subject><subject>Synaptic connectivity</subject><subject>Topology</subject><issn>2770-744X</issn><isbn>9798350305746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKAzEYRqMgWLRvIJgXmPrnNkmWpV6hqAsFwUVJZv7Y2GmmTKK1b29FXR34OHyLQ8g5gwljYC8uZ_dTZY21Ew5cTBhwC0rqAzK22hqhQIDSsj4kI641VFrKl2MyzvkdAAQHCRpG5PVx6TJWXd-ssKW5uIKZxkQdzZu4iumNJvwYXLdH2fbDiq77Fju6jWW5d5o-FfwqVYsbTC2m8rMkbEr8jGV3So6C6zKO_3hCnq-vnma31fzh5m42nVeRMVsq41vjJPeOy8BqF7wKWAuJ0rcBG18zrYLy1jes9sowMFzVAaw2XnLBgxIn5Oz3NyLiYjPEtRt2i_8e4huc1VaF</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Makovkin, Sergey</creator><creator>Kastalskiy, Innokentiy</creator><creator>Gordleeva, Susanna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230918</creationdate><title>Phase-locked states in a spiking neural network model with a context-dependent connectivity</title><author>Makovkin, Sergey ; Kastalskiy, Innokentiy ; Gordleeva, Susanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-8bd8a42ba24f16afb5fe634e4bdfecb6175f5b9bc16b58108256f0978b4232f53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological system modeling</topic><topic>Clustering algorithms</topic><topic>Hebb's rule</topic><topic>Image recognition</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Neuron</topic><topic>Neurons</topic><topic>Phase-locking</topic><topic>Synaptic connectivity</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Makovkin, Sergey</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Gordleeva, Susanna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makovkin, Sergey</au><au>Kastalskiy, Innokentiy</au><au>Gordleeva, Susanna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Phase-locked states in a spiking neural network model with a context-dependent connectivity</atitle><btitle>2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA)</btitle><stitle>DCNA</stitle><date>2023-09-18</date><risdate>2023</risdate><spage>182</spage><epage>185</epage><pages>182-185</pages><eissn>2770-744X</eissn><eisbn>9798350305746</eisbn><abstract>In this paper, we propose a spiking neural network model with Hebbian connectivity that can adjust its activity to input stimuli. The implemented architecture is suitable for the task of recognizing binary images encoded using in-phase and anti-phase oscillations relative to the global clock signal. The phase locking effect makes it possible to achieve cluster synchronization of neurons (both at the input and at the output layer). In this work, a context-dependent algorithm for initiating oscillations of spiking interneurons, which are in an excitable mode, is implemented. As a result, only a fraction of the Hebb connections are employed for the pattern retrieval from memory. The biologically relevant Hodgkin-Huxley-Mainen model is utilized as neurons.</abstract><pub>IEEE</pub><doi>10.1109/DCNA59899.2023.10290547</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2770-744X |
ispartof | 2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 2023, p.182-185 |
issn | 2770-744X |
language | eng |
recordid | cdi_ieee_primary_10290547 |
source | IEEE Xplore All Conference Series |
subjects | Biological system modeling Clustering algorithms Hebb's rule Image recognition Mathematical models Neural network Neural networks Neuron Neurons Phase-locking Synaptic connectivity Topology |
title | Phase-locked states in a spiking neural network model with a context-dependent connectivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Phase-locked%20states%20in%20a%20spiking%20neural%20network%20model%20with%20a%20context-dependent%20connectivity&rft.btitle=2023%207th%20Scientific%20School%20Dynamics%20of%20Complex%20Networks%20and%20their%20Applications%20(DCNA)&rft.au=Makovkin,%20Sergey&rft.date=2023-09-18&rft.spage=182&rft.epage=185&rft.pages=182-185&rft.eissn=2770-744X&rft_id=info:doi/10.1109/DCNA59899.2023.10290547&rft.eisbn=9798350305746&rft_dat=%3Cieee_CHZPO%3E10290547%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-8bd8a42ba24f16afb5fe634e4bdfecb6175f5b9bc16b58108256f0978b4232f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10290547&rfr_iscdi=true |