Loading…

Numerical reconstruction of gene expression measurements from mixed cell populations

We propose a procedure for numerically decomposing gene expression measurements obtained from a mixed cell population into estimates of the expression levels for the biologically distinct components of the mixture. The motivating application is the problem of obtaining the tumor cell expression sign...

Full description

Saved in:
Bibliographic Details
Main Author: Shedden, K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 49
container_issue
container_start_page 46
container_title
container_volume
creator Shedden, K.
description We propose a procedure for numerically decomposing gene expression measurements obtained from a mixed cell population into estimates of the expression levels for the biologically distinct components of the mixture. The motivating application is the problem of obtaining the tumor cell expression signal from a tissue sample that contains tumor cells as well as various types of normal cells. We propose that a numerical restoration procedure may partially substitute for a physical fractionation when the latter is not feasible. The procedure is based on a hierarchical probability model that reflects the relationship between the underlying chemical mixture and the observable aggregate measurements. Using a Monte Carlo procedure, reconstructions of the latent signal components are obtained, along with estimates of the normal and tumor expression distributions, and estimates of the fraction of normal cells in each tissue sample. Among other uses, these values can be used to diagnose differential expression between the tumor and normal cell populations. We demonstrate the procedure using simulated data and a microarray dataset from a colon cancer study.
doi_str_mv 10.1109/ISBI.2002.1029189
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1029189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1029189</ieee_id><sourcerecordid>1029189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-715d3819e7dcb31a74f7676ccc6fed65ef61489a28a47e67e50d6cccf6355cce3</originalsourceid><addsrcrecordid>eNotj81KxDAcxAMiqOs-gHjJC7QmTfN11MWPwqIHV_C2xOQfiTRNSVpY317L7lwG5scMDEI3lNSUEn3XvT90dUNIU1PSaKr0GboiUhEmuWo_L9C6lB_yL6aZ4O0l2r3OEXKwpscZbBrKlGc7hTTg5PE3DIDhMGYoZYkimDJniDBMBfucIo7hAA5b6Hs8pnHuzVIt1-jcm77A-uQr9PH0uNu8VNu3525zv60ClXyqJOWOKapBOvvFqJGtl0IKa63w4AQHL2irtGmUaSUICZy4hXrBOLcW2ArdHncDAOzHHKLJv_vTcfYHBfhRPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Numerical reconstruction of gene expression measurements from mixed cell populations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shedden, K.</creator><creatorcontrib>Shedden, K.</creatorcontrib><description>We propose a procedure for numerically decomposing gene expression measurements obtained from a mixed cell population into estimates of the expression levels for the biologically distinct components of the mixture. The motivating application is the problem of obtaining the tumor cell expression signal from a tissue sample that contains tumor cells as well as various types of normal cells. We propose that a numerical restoration procedure may partially substitute for a physical fractionation when the latter is not feasible. The procedure is based on a hierarchical probability model that reflects the relationship between the underlying chemical mixture and the observable aggregate measurements. Using a Monte Carlo procedure, reconstructions of the latent signal components are obtained, along with estimates of the normal and tumor expression distributions, and estimates of the fraction of normal cells in each tissue sample. Among other uses, these values can be used to diagnose differential expression between the tumor and normal cell populations. We demonstrate the procedure using simulated data and a microarray dataset from a colon cancer study.</description><identifier>ISBN: 078037584X</identifier><identifier>ISBN: 9780780375840</identifier><identifier>DOI: 10.1109/ISBI.2002.1029189</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Cells (biology) ; Chemicals ; Colon ; Fractionation ; Gene expression ; Monte Carlo methods ; Neoplasms ; Signal restoration ; Tumors</subject><ispartof>Proceedings IEEE International Symposium on Biomedical Imaging, 2002, p.46-49</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1029189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1029189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shedden, K.</creatorcontrib><title>Numerical reconstruction of gene expression measurements from mixed cell populations</title><title>Proceedings IEEE International Symposium on Biomedical Imaging</title><addtitle>ISBI</addtitle><description>We propose a procedure for numerically decomposing gene expression measurements obtained from a mixed cell population into estimates of the expression levels for the biologically distinct components of the mixture. The motivating application is the problem of obtaining the tumor cell expression signal from a tissue sample that contains tumor cells as well as various types of normal cells. We propose that a numerical restoration procedure may partially substitute for a physical fractionation when the latter is not feasible. The procedure is based on a hierarchical probability model that reflects the relationship between the underlying chemical mixture and the observable aggregate measurements. Using a Monte Carlo procedure, reconstructions of the latent signal components are obtained, along with estimates of the normal and tumor expression distributions, and estimates of the fraction of normal cells in each tissue sample. Among other uses, these values can be used to diagnose differential expression between the tumor and normal cell populations. We demonstrate the procedure using simulated data and a microarray dataset from a colon cancer study.</description><subject>Aggregates</subject><subject>Cells (biology)</subject><subject>Chemicals</subject><subject>Colon</subject><subject>Fractionation</subject><subject>Gene expression</subject><subject>Monte Carlo methods</subject><subject>Neoplasms</subject><subject>Signal restoration</subject><subject>Tumors</subject><isbn>078037584X</isbn><isbn>9780780375840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KxDAcxAMiqOs-gHjJC7QmTfN11MWPwqIHV_C2xOQfiTRNSVpY317L7lwG5scMDEI3lNSUEn3XvT90dUNIU1PSaKr0GboiUhEmuWo_L9C6lB_yL6aZ4O0l2r3OEXKwpscZbBrKlGc7hTTg5PE3DIDhMGYoZYkimDJniDBMBfucIo7hAA5b6Hs8pnHuzVIt1-jcm77A-uQr9PH0uNu8VNu3525zv60ClXyqJOWOKapBOvvFqJGtl0IKa63w4AQHL2irtGmUaSUICZy4hXrBOLcW2ArdHncDAOzHHKLJv_vTcfYHBfhRPg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Shedden, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Numerical reconstruction of gene expression measurements from mixed cell populations</title><author>Shedden, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-715d3819e7dcb31a74f7676ccc6fed65ef61489a28a47e67e50d6cccf6355cce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aggregates</topic><topic>Cells (biology)</topic><topic>Chemicals</topic><topic>Colon</topic><topic>Fractionation</topic><topic>Gene expression</topic><topic>Monte Carlo methods</topic><topic>Neoplasms</topic><topic>Signal restoration</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Shedden, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shedden, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical reconstruction of gene expression measurements from mixed cell populations</atitle><btitle>Proceedings IEEE International Symposium on Biomedical Imaging</btitle><stitle>ISBI</stitle><date>2002</date><risdate>2002</risdate><spage>46</spage><epage>49</epage><pages>46-49</pages><isbn>078037584X</isbn><isbn>9780780375840</isbn><abstract>We propose a procedure for numerically decomposing gene expression measurements obtained from a mixed cell population into estimates of the expression levels for the biologically distinct components of the mixture. The motivating application is the problem of obtaining the tumor cell expression signal from a tissue sample that contains tumor cells as well as various types of normal cells. We propose that a numerical restoration procedure may partially substitute for a physical fractionation when the latter is not feasible. The procedure is based on a hierarchical probability model that reflects the relationship between the underlying chemical mixture and the observable aggregate measurements. Using a Monte Carlo procedure, reconstructions of the latent signal components are obtained, along with estimates of the normal and tumor expression distributions, and estimates of the fraction of normal cells in each tissue sample. Among other uses, these values can be used to diagnose differential expression between the tumor and normal cell populations. We demonstrate the procedure using simulated data and a microarray dataset from a colon cancer study.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2002.1029189</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 078037584X
ispartof Proceedings IEEE International Symposium on Biomedical Imaging, 2002, p.46-49
issn
language eng
recordid cdi_ieee_primary_1029189
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Cells (biology)
Chemicals
Colon
Fractionation
Gene expression
Monte Carlo methods
Neoplasms
Signal restoration
Tumors
title Numerical reconstruction of gene expression measurements from mixed cell populations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20reconstruction%20of%20gene%20expression%20measurements%20from%20mixed%20cell%20populations&rft.btitle=Proceedings%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging&rft.au=Shedden,%20K.&rft.date=2002&rft.spage=46&rft.epage=49&rft.pages=46-49&rft.isbn=078037584X&rft.isbn_list=9780780375840&rft_id=info:doi/10.1109/ISBI.2002.1029189&rft_dat=%3Cieee_6IE%3E1029189%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-715d3819e7dcb31a74f7676ccc6fed65ef61489a28a47e67e50d6cccf6355cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1029189&rfr_iscdi=true