Loading…
A 36-91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2 ^\circ -2.8 ^\circ for Joint Communication and Sensing
Joint communication and sensing utilizing wide bandwidth and additional spectral bands within the 30-100 GHz range presents exciting opportunities for 6G networks. It enables improved spectrum utilization and enhanced environmental awareness. However, achieving frequency agility in a universal array...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2023-10, p.1-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 17 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | |
creator | Liu, Zheng Karahan, Emir Ali Sengupta, Kaushik |
description | Joint communication and sensing utilizing wide bandwidth and additional spectral bands within the 30-100 GHz range presents exciting opportunities for 6G networks. It enables improved spectrum utilization and enhanced environmental awareness. However, achieving frequency agility in a universal array interface that seamlessly operates across licensed, unlicensed, and shared bands poses significant challenges. This article addresses this challenge by presenting a crucial component, specifically the architecture of an ultra-wideband beamforming transmitter (Tx) that employs: 1) an ultra-wideband vector modulator phase shifter; 2) a broadband power amplifier (PA) enabled by inverse design method; and 3) a variable gain amplifier (VGA) with a tailored broadband frequency response. To allow for precise phase control across such a large bandwidth, a 90 ^\circ hybrid-Marchand balun-based bandwidth extension network is proposed for ultra-wideband I/Q signal generation. The principle, analysis, and design of the extension network are presented in detail, leveraging a novel broadband modeling technique. The beamformer prototype implemented in 90-nm SiGe BiCMOS process maintains extremely low maximum phase error below 0.5 LSB, rms phase error of 1.24 ^\circ -2.8 ^\circ , and rms gain error of 0.24-0.35 dB, enabled by the proposed 5-bit phase shifter covering 36-91 GHz. The Tx also demonstrates 30-35 dB gain with 10 dB gain control, \text{OP}_{\text{1\,dB}} of 9-13.5 dBm and supports 10.8 Gbps 64-QAM modulation with - 25.6 dB EVM with P_{\text{avg}} of 4 dBm at 60 GHz. To the best of our knowledge, this work represents the first beamforming Tx that covers the frequency range from 5G FR2 to W band, offering a fractional bandwidth of 87% (defined by the bandwidth over which the maximum phase error is below 1/2 LSB). |
doi_str_mv | 10.1109/TMTT.2023.3324428 |
format | article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10296479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10296479</ieee_id><sourcerecordid>10296479</sourcerecordid><originalsourceid>FETCH-ieee_primary_102964793</originalsourceid><addsrcrecordid>eNqFjctKBDEURIMo2D4-QHBxf6DbvPqR5cwwOgiCYIMbcYg9d-yISeQmg-hH-M22oGtXVUVRdRg7E7wSgpuL_qbvK8mlqpSSWstujxWirtvSNC3fZwXnoiuN7vghO0rpZYq65l3BvmagmtIIuFp9wpyi3TzZsIE5Wr-N5F14hp5sSN7ljAQzGkaXccg7Qrh3eYTb0SaEJVGkaZXfEQOISsLjw-BogFJW3Z-fDuE6upBhEb3fBTfY7GKAH-AdhjTBTtjB1r4mPP3VY3Z-uewXq9Ih4vqNnLf0sRZcmka3Rv1TfwMsMlPN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 36-91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2 ^\circ -2.8 ^\circ for Joint Communication and Sensing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Zheng ; Karahan, Emir Ali ; Sengupta, Kaushik</creator><creatorcontrib>Liu, Zheng ; Karahan, Emir Ali ; Sengupta, Kaushik</creatorcontrib><description><![CDATA[Joint communication and sensing utilizing wide bandwidth and additional spectral bands within the 30-100 GHz range presents exciting opportunities for 6G networks. It enables improved spectrum utilization and enhanced environmental awareness. However, achieving frequency agility in a universal array interface that seamlessly operates across licensed, unlicensed, and shared bands poses significant challenges. This article addresses this challenge by presenting a crucial component, specifically the architecture of an ultra-wideband beamforming transmitter (Tx) that employs: 1) an ultra-wideband vector modulator phase shifter; 2) a broadband power amplifier (PA) enabled by inverse design method; and 3) a variable gain amplifier (VGA) with a tailored broadband frequency response. To allow for precise phase control across such a large bandwidth, a 90<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> hybrid-Marchand balun-based bandwidth extension network is proposed for ultra-wideband I/Q signal generation. The principle, analysis, and design of the extension network are presented in detail, leveraging a novel broadband modeling technique. The beamformer prototype implemented in 90-nm SiGe BiCMOS process maintains extremely low maximum phase error below 0.5 LSB, rms phase error of 1.24<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>-2.8<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>, and rms gain error of 0.24-0.35 dB, enabled by the proposed 5-bit phase shifter covering 36-91 GHz. The Tx also demonstrates 30-35 dB gain with 10 dB gain control, <inline-formula> <tex-math notation="LaTeX">\text{OP}_{\text{1\,dB}}</tex-math> </inline-formula> of 9-13.5 dBm and supports 10.8 Gbps 64-QAM modulation with <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>25.6 dB EVM with <inline-formula> <tex-math notation="LaTeX">P_{\text{avg}}</tex-math> </inline-formula> of 4 dBm at 60 GHz. To the best of our knowledge, this work represents the first beamforming Tx that covers the frequency range from 5G FR2 to <inline-formula> <tex-math notation="LaTeX">W</tex-math> </inline-formula> band, offering a fractional bandwidth of 87% (defined by the bandwidth over which the maximum phase error is below 1/2 LSB).]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3324428</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>90<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^\circ</tex-math> </inline-formula> hybrid ; Bandwidth ; Beamformer ; Broadband amplifiers ; frequency-agile ; Gain ; Millimeter wave communication ; mmWave ; phase shifter ; Phase shifters ; phased array ; Phased arrays ; transmitter (Tx) ; Ultra wideband technology ; ultra-wideband</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-10, p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8672-9879 ; 0000-0001-7074-0248 ; 0009-0007-1515-4271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10296479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Karahan, Emir Ali</creatorcontrib><creatorcontrib>Sengupta, Kaushik</creatorcontrib><title>A 36-91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2 ^\circ -2.8 ^\circ for Joint Communication and Sensing</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[Joint communication and sensing utilizing wide bandwidth and additional spectral bands within the 30-100 GHz range presents exciting opportunities for 6G networks. It enables improved spectrum utilization and enhanced environmental awareness. However, achieving frequency agility in a universal array interface that seamlessly operates across licensed, unlicensed, and shared bands poses significant challenges. This article addresses this challenge by presenting a crucial component, specifically the architecture of an ultra-wideband beamforming transmitter (Tx) that employs: 1) an ultra-wideband vector modulator phase shifter; 2) a broadband power amplifier (PA) enabled by inverse design method; and 3) a variable gain amplifier (VGA) with a tailored broadband frequency response. To allow for precise phase control across such a large bandwidth, a 90<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> hybrid-Marchand balun-based bandwidth extension network is proposed for ultra-wideband I/Q signal generation. The principle, analysis, and design of the extension network are presented in detail, leveraging a novel broadband modeling technique. The beamformer prototype implemented in 90-nm SiGe BiCMOS process maintains extremely low maximum phase error below 0.5 LSB, rms phase error of 1.24<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>-2.8<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>, and rms gain error of 0.24-0.35 dB, enabled by the proposed 5-bit phase shifter covering 36-91 GHz. The Tx also demonstrates 30-35 dB gain with 10 dB gain control, <inline-formula> <tex-math notation="LaTeX">\text{OP}_{\text{1\,dB}}</tex-math> </inline-formula> of 9-13.5 dBm and supports 10.8 Gbps 64-QAM modulation with <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>25.6 dB EVM with <inline-formula> <tex-math notation="LaTeX">P_{\text{avg}}</tex-math> </inline-formula> of 4 dBm at 60 GHz. To the best of our knowledge, this work represents the first beamforming Tx that covers the frequency range from 5G FR2 to <inline-formula> <tex-math notation="LaTeX">W</tex-math> </inline-formula> band, offering a fractional bandwidth of 87% (defined by the bandwidth over which the maximum phase error is below 1/2 LSB).]]></description><subject>90<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^\circ</tex-math> </inline-formula> hybrid</subject><subject>Bandwidth</subject><subject>Beamformer</subject><subject>Broadband amplifiers</subject><subject>frequency-agile</subject><subject>Gain</subject><subject>Millimeter wave communication</subject><subject>mmWave</subject><subject>phase shifter</subject><subject>Phase shifters</subject><subject>phased array</subject><subject>Phased arrays</subject><subject>transmitter (Tx)</subject><subject>Ultra wideband technology</subject><subject>ultra-wideband</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFjctKBDEURIMo2D4-QHBxf6DbvPqR5cwwOgiCYIMbcYg9d-yISeQmg-hH-M22oGtXVUVRdRg7E7wSgpuL_qbvK8mlqpSSWstujxWirtvSNC3fZwXnoiuN7vghO0rpZYq65l3BvmagmtIIuFp9wpyi3TzZsIE5Wr-N5F14hp5sSN7ljAQzGkaXccg7Qrh3eYTb0SaEJVGkaZXfEQOISsLjw-BogFJW3Z-fDuE6upBhEb3fBTfY7GKAH-AdhjTBTtjB1r4mPP3VY3Z-uewXq9Ih4vqNnLf0sRZcmka3Rv1TfwMsMlPN</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Liu, Zheng</creator><creator>Karahan, Emir Ali</creator><creator>Sengupta, Kaushik</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-8672-9879</orcidid><orcidid>https://orcid.org/0000-0001-7074-0248</orcidid><orcidid>https://orcid.org/0009-0007-1515-4271</orcidid></search><sort><creationdate>20231024</creationdate><title>A 36-91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2 ^\circ -2.8 ^\circ for Joint Communication and Sensing</title><author>Liu, Zheng ; Karahan, Emir Ali ; Sengupta, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_102964793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>90<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^\circ</tex-math> </inline-formula> hybrid</topic><topic>Bandwidth</topic><topic>Beamformer</topic><topic>Broadband amplifiers</topic><topic>frequency-agile</topic><topic>Gain</topic><topic>Millimeter wave communication</topic><topic>mmWave</topic><topic>phase shifter</topic><topic>Phase shifters</topic><topic>phased array</topic><topic>Phased arrays</topic><topic>transmitter (Tx)</topic><topic>Ultra wideband technology</topic><topic>ultra-wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Karahan, Emir Ali</creatorcontrib><creatorcontrib>Sengupta, Kaushik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zheng</au><au>Karahan, Emir Ali</au><au>Sengupta, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 36-91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2 ^\circ -2.8 ^\circ for Joint Communication and Sensing</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-10-24</date><risdate>2023</risdate><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[Joint communication and sensing utilizing wide bandwidth and additional spectral bands within the 30-100 GHz range presents exciting opportunities for 6G networks. It enables improved spectrum utilization and enhanced environmental awareness. However, achieving frequency agility in a universal array interface that seamlessly operates across licensed, unlicensed, and shared bands poses significant challenges. This article addresses this challenge by presenting a crucial component, specifically the architecture of an ultra-wideband beamforming transmitter (Tx) that employs: 1) an ultra-wideband vector modulator phase shifter; 2) a broadband power amplifier (PA) enabled by inverse design method; and 3) a variable gain amplifier (VGA) with a tailored broadband frequency response. To allow for precise phase control across such a large bandwidth, a 90<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula> hybrid-Marchand balun-based bandwidth extension network is proposed for ultra-wideband I/Q signal generation. The principle, analysis, and design of the extension network are presented in detail, leveraging a novel broadband modeling technique. The beamformer prototype implemented in 90-nm SiGe BiCMOS process maintains extremely low maximum phase error below 0.5 LSB, rms phase error of 1.24<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>-2.8<inline-formula> <tex-math notation="LaTeX">^\circ</tex-math> </inline-formula>, and rms gain error of 0.24-0.35 dB, enabled by the proposed 5-bit phase shifter covering 36-91 GHz. The Tx also demonstrates 30-35 dB gain with 10 dB gain control, <inline-formula> <tex-math notation="LaTeX">\text{OP}_{\text{1\,dB}}</tex-math> </inline-formula> of 9-13.5 dBm and supports 10.8 Gbps 64-QAM modulation with <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>25.6 dB EVM with <inline-formula> <tex-math notation="LaTeX">P_{\text{avg}}</tex-math> </inline-formula> of 4 dBm at 60 GHz. To the best of our knowledge, this work represents the first beamforming Tx that covers the frequency range from 5G FR2 to <inline-formula> <tex-math notation="LaTeX">W</tex-math> </inline-formula> band, offering a fractional bandwidth of 87% (defined by the bandwidth over which the maximum phase error is below 1/2 LSB).]]></abstract><pub>IEEE</pub><doi>10.1109/TMTT.2023.3324428</doi><orcidid>https://orcid.org/0000-0001-8672-9879</orcidid><orcidid>https://orcid.org/0000-0001-7074-0248</orcidid><orcidid>https://orcid.org/0009-0007-1515-4271</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2023-10, p.1-17 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_10296479 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 90<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^\circ</tex-math> </inline-formula> hybrid Bandwidth Beamformer Broadband amplifiers frequency-agile Gain Millimeter wave communication mmWave phase shifter Phase shifters phased array Phased arrays transmitter (Tx) Ultra wideband technology ultra-wideband |
title | A 36-91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2 ^\circ -2.8 ^\circ for Joint Communication and Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2036-91%20GHz%20Broadband%20Beamforming%20Transmitter%20Architecture%20With%20Phase%20Error%20Between%201.2%20%5E%5Ccirc%20-2.8%20%5E%5Ccirc%20for%20Joint%20Communication%20and%20Sensing&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Liu,%20Zheng&rft.date=2023-10-24&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3324428&rft_dat=%3Cieee%3E10296479%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_102964793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10296479&rfr_iscdi=true |