Loading…
Q-Learning Decision-Making Model for Robotic System
The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical po...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nevliudov, Igor Tsymbal, Oleksandr Bronnikov, Artem |
description | The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points. |
doi_str_mv | 10.1109/EWDTS59469.2023.10297075 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10297075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10297075</ieee_id><sourcerecordid>10297075</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-220614f2589e091391d10e3946306f8511da9b82ebd111e0f97730b3eed8a8c63</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdBsNS8gYu8wMR7ZzI_dylt_YEU0VZ0VybJjYy2GUmy6durqKuPszmcT4gcoUAEulq9LLcbQ6WlQoHSBYIiB86ciIwceW1AY-lLdypmqnRKOouv5yIbx3cAQIuGFM6EfpQVh6GP_Vu-5CaOMfVyHT5-eJ1a3uddGvKnVKcpNvnmOE58uBBnXdiPnP3tXDzfrLaLO1k93N4vrisZEWmSSoHFslPGEwOhJmwRWH8Xa7CdN4htoNorrltEZOjIOQ21Zm598I3Vc3H5643MvPsc4iEMx93_T_0FbqlFlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Q-Learning Decision-Making Model for Robotic System</title><source>IEEE Xplore All Conference Series</source><creator>Nevliudov, Igor ; Tsymbal, Oleksandr ; Bronnikov, Artem</creator><creatorcontrib>Nevliudov, Igor ; Tsymbal, Oleksandr ; Bronnikov, Artem</creatorcontrib><description>The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.</description><identifier>EISSN: 2472-761X</identifier><identifier>EISBN: 9798350314847</identifier><identifier>DOI: 10.1109/EWDTS59469.2023.10297075</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Decision making ; Mathematical models ; Numerical models ; Q-learning ; Reinforcement learning ; Robot sensing systems ; Robotics ; Service robots</subject><ispartof>2023 IEEE East-West Design & Test Symposium (EWDTS), 2023, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10297075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10297075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nevliudov, Igor</creatorcontrib><creatorcontrib>Tsymbal, Oleksandr</creatorcontrib><creatorcontrib>Bronnikov, Artem</creatorcontrib><title>Q-Learning Decision-Making Model for Robotic System</title><title>2023 IEEE East-West Design & Test Symposium (EWDTS)</title><addtitle>EWDTS</addtitle><description>The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.</description><subject>Computational modeling</subject><subject>Decision making</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Q-learning</subject><subject>Reinforcement learning</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Service robots</subject><issn>2472-761X</issn><isbn>9798350314847</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdBsNS8gYu8wMR7ZzI_dylt_YEU0VZ0VybJjYy2GUmy6durqKuPszmcT4gcoUAEulq9LLcbQ6WlQoHSBYIiB86ciIwceW1AY-lLdypmqnRKOouv5yIbx3cAQIuGFM6EfpQVh6GP_Vu-5CaOMfVyHT5-eJ1a3uddGvKnVKcpNvnmOE58uBBnXdiPnP3tXDzfrLaLO1k93N4vrisZEWmSSoHFslPGEwOhJmwRWH8Xa7CdN4htoNorrltEZOjIOQ21Zm598I3Vc3H5643MvPsc4iEMx93_T_0FbqlFlw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Nevliudov, Igor</creator><creator>Tsymbal, Oleksandr</creator><creator>Bronnikov, Artem</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230922</creationdate><title>Q-Learning Decision-Making Model for Robotic System</title><author>Nevliudov, Igor ; Tsymbal, Oleksandr ; Bronnikov, Artem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-220614f2589e091391d10e3946306f8511da9b82ebd111e0f97730b3eed8a8c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Decision making</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Q-learning</topic><topic>Reinforcement learning</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Service robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Nevliudov, Igor</creatorcontrib><creatorcontrib>Tsymbal, Oleksandr</creatorcontrib><creatorcontrib>Bronnikov, Artem</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nevliudov, Igor</au><au>Tsymbal, Oleksandr</au><au>Bronnikov, Artem</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Q-Learning Decision-Making Model for Robotic System</atitle><btitle>2023 IEEE East-West Design & Test Symposium (EWDTS)</btitle><stitle>EWDTS</stitle><date>2023-09-22</date><risdate>2023</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2472-761X</eissn><eisbn>9798350314847</eisbn><abstract>The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.</abstract><pub>IEEE</pub><doi>10.1109/EWDTS59469.2023.10297075</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2472-761X |
ispartof | 2023 IEEE East-West Design & Test Symposium (EWDTS), 2023, p.1-7 |
issn | 2472-761X |
language | eng |
recordid | cdi_ieee_primary_10297075 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Decision making Mathematical models Numerical models Q-learning Reinforcement learning Robot sensing systems Robotics Service robots |
title | Q-Learning Decision-Making Model for Robotic System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Q-Learning%20Decision-Making%20Model%20for%20Robotic%20System&rft.btitle=2023%20IEEE%20East-West%20Design%20&%20Test%20Symposium%20(EWDTS)&rft.au=Nevliudov,%20Igor&rft.date=2023-09-22&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2472-761X&rft_id=info:doi/10.1109/EWDTS59469.2023.10297075&rft.eisbn=9798350314847&rft_dat=%3Cieee_CHZPO%3E10297075%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-220614f2589e091391d10e3946306f8511da9b82ebd111e0f97730b3eed8a8c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10297075&rfr_iscdi=true |