Loading…

Q-Learning Decision-Making Model for Robotic System

The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical po...

Full description

Saved in:
Bibliographic Details
Main Authors: Nevliudov, Igor, Tsymbal, Oleksandr, Bronnikov, Artem
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Nevliudov, Igor
Tsymbal, Oleksandr
Bronnikov, Artem
description The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.
doi_str_mv 10.1109/EWDTS59469.2023.10297075
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10297075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10297075</ieee_id><sourcerecordid>10297075</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-220614f2589e091391d10e3946306f8511da9b82ebd111e0f97730b3eed8a8c63</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdBsNS8gYu8wMR7ZzI_dylt_YEU0VZ0VybJjYy2GUmy6durqKuPszmcT4gcoUAEulq9LLcbQ6WlQoHSBYIiB86ciIwceW1AY-lLdypmqnRKOouv5yIbx3cAQIuGFM6EfpQVh6GP_Vu-5CaOMfVyHT5-eJ1a3uddGvKnVKcpNvnmOE58uBBnXdiPnP3tXDzfrLaLO1k93N4vrisZEWmSSoHFslPGEwOhJmwRWH8Xa7CdN4htoNorrltEZOjIOQ21Zm598I3Vc3H5643MvPsc4iEMx93_T_0FbqlFlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Q-Learning Decision-Making Model for Robotic System</title><source>IEEE Xplore All Conference Series</source><creator>Nevliudov, Igor ; Tsymbal, Oleksandr ; Bronnikov, Artem</creator><creatorcontrib>Nevliudov, Igor ; Tsymbal, Oleksandr ; Bronnikov, Artem</creatorcontrib><description>The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.</description><identifier>EISSN: 2472-761X</identifier><identifier>EISBN: 9798350314847</identifier><identifier>DOI: 10.1109/EWDTS59469.2023.10297075</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Decision making ; Mathematical models ; Numerical models ; Q-learning ; Reinforcement learning ; Robot sensing systems ; Robotics ; Service robots</subject><ispartof>2023 IEEE East-West Design &amp; Test Symposium (EWDTS), 2023, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10297075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10297075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nevliudov, Igor</creatorcontrib><creatorcontrib>Tsymbal, Oleksandr</creatorcontrib><creatorcontrib>Bronnikov, Artem</creatorcontrib><title>Q-Learning Decision-Making Model for Robotic System</title><title>2023 IEEE East-West Design &amp; Test Symposium (EWDTS)</title><addtitle>EWDTS</addtitle><description>The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.</description><subject>Computational modeling</subject><subject>Decision making</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Q-learning</subject><subject>Reinforcement learning</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Service robots</subject><issn>2472-761X</issn><isbn>9798350314847</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdBsNS8gYu8wMR7ZzI_dylt_YEU0VZ0VybJjYy2GUmy6durqKuPszmcT4gcoUAEulq9LLcbQ6WlQoHSBYIiB86ciIwceW1AY-lLdypmqnRKOouv5yIbx3cAQIuGFM6EfpQVh6GP_Vu-5CaOMfVyHT5-eJ1a3uddGvKnVKcpNvnmOE58uBBnXdiPnP3tXDzfrLaLO1k93N4vrisZEWmSSoHFslPGEwOhJmwRWH8Xa7CdN4htoNorrltEZOjIOQ21Zm598I3Vc3H5643MvPsc4iEMx93_T_0FbqlFlw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Nevliudov, Igor</creator><creator>Tsymbal, Oleksandr</creator><creator>Bronnikov, Artem</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230922</creationdate><title>Q-Learning Decision-Making Model for Robotic System</title><author>Nevliudov, Igor ; Tsymbal, Oleksandr ; Bronnikov, Artem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-220614f2589e091391d10e3946306f8511da9b82ebd111e0f97730b3eed8a8c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Decision making</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Q-learning</topic><topic>Reinforcement learning</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Service robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Nevliudov, Igor</creatorcontrib><creatorcontrib>Tsymbal, Oleksandr</creatorcontrib><creatorcontrib>Bronnikov, Artem</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nevliudov, Igor</au><au>Tsymbal, Oleksandr</au><au>Bronnikov, Artem</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Q-Learning Decision-Making Model for Robotic System</atitle><btitle>2023 IEEE East-West Design &amp; Test Symposium (EWDTS)</btitle><stitle>EWDTS</stitle><date>2023-09-22</date><risdate>2023</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2472-761X</eissn><eisbn>9798350314847</eisbn><abstract>The proposed paper analyses the modern approaches to decision-making, based on reinforcement learning with practical implementation of Q-learning for tasks of robotics. Theoretical aspects of reinforcement learning are considered in comparison to other decision-making technologies. From practical point, Q-learning is proposed to use for robot's actions observation, for reduction of decision-making process duration and as a decision-making model for mobile robot movements inside complex workspace. Materials of paper include the results of numerical experiments, which simulate workspaces of robot with different levels of complexity for paths with various starting points.</abstract><pub>IEEE</pub><doi>10.1109/EWDTS59469.2023.10297075</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2472-761X
ispartof 2023 IEEE East-West Design & Test Symposium (EWDTS), 2023, p.1-7
issn 2472-761X
language eng
recordid cdi_ieee_primary_10297075
source IEEE Xplore All Conference Series
subjects Computational modeling
Decision making
Mathematical models
Numerical models
Q-learning
Reinforcement learning
Robot sensing systems
Robotics
Service robots
title Q-Learning Decision-Making Model for Robotic System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Q-Learning%20Decision-Making%20Model%20for%20Robotic%20System&rft.btitle=2023%20IEEE%20East-West%20Design%20&%20Test%20Symposium%20(EWDTS)&rft.au=Nevliudov,%20Igor&rft.date=2023-09-22&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2472-761X&rft_id=info:doi/10.1109/EWDTS59469.2023.10297075&rft.eisbn=9798350314847&rft_dat=%3Cieee_CHZPO%3E10297075%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-220614f2589e091391d10e3946306f8511da9b82ebd111e0f97730b3eed8a8c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10297075&rfr_iscdi=true