Loading…

Learning Linear Gaussian Polytree Models With Interventions

We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG rep...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in information theory 2023, Vol.4, p.569-578
Main Authors: Tramontano, Daniele, Waldmann, L., Drton, M., Duarte, Eliana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3
container_end_page 578
container_issue
container_start_page 569
container_title IEEE journal on selected areas in information theory
container_volume 4
creator Tramontano, Daniele
Waldmann, L.
Drton, M.
Duarte, Eliana
description We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.
doi_str_mv 10.1109/JSAIT.2023.3328429
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10299801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10299801</ieee_id><sourcerecordid>2891000745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGr_gHhY8Lx18tF84KkUrZUVBSsewzadaErN1mQr9N-7tR56mvfwPjPMQ8glhSGlYG4eX8ez-ZAB40POmRbMnJAek4KWWik4PcrnZJDzCgAYo0Jp1SO3FdYphvhRVCF2sZjW25xDHYuXZr1rE2Lx1CxxnYv30H4Ws9hi-sHYhibmC3Lm63XGwf_sk7f7u_nkoayep7PJuCodlawtmZKeaqeF1t55DmKhkXMxAnBCSs1R1AuhlnLpJYiR42LhmPFMKqepAYe8T64Pezep-d5ibu2q2abYnbRMG9q9o8Soa7FDy6Um54TeblL4qtPOUrB7T_bPk917sv-eOujqAAVEPAKYMRoo_wX8R2Kt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891000745</pqid></control><display><type>article</type><title>Learning Linear Gaussian Polytree Models With Interventions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tramontano, Daniele ; Waldmann, L. ; Drton, M. ; Duarte, Eliana</creator><creatorcontrib>Tramontano, Daniele ; Waldmann, L. ; Drton, M. ; Duarte, Eliana</creatorcontrib><description>We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.</description><identifier>ISSN: 2641-8770</identifier><identifier>EISSN: 2641-8770</identifier><identifier>DOI: 10.1109/JSAIT.2023.3328429</identifier><identifier>CODEN: IJSTL5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Causal discovery ; Covariance matrices ; Datasets ; Gaussian processes ; Gene expression ; Graph theory ; interventions ; linear structural equation model ; Markov processes ; Mathematical models ; Optimization ; Polytrees ; Synthetic data ; Tree graphs</subject><ispartof>IEEE journal on selected areas in information theory, 2023, Vol.4, p.569-578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3</cites><orcidid>0000-0001-5614-3025 ; 0009-0006-9302-0781 ; 0000-0002-0742-4151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10299801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tramontano, Daniele</creatorcontrib><creatorcontrib>Waldmann, L.</creatorcontrib><creatorcontrib>Drton, M.</creatorcontrib><creatorcontrib>Duarte, Eliana</creatorcontrib><title>Learning Linear Gaussian Polytree Models With Interventions</title><title>IEEE journal on selected areas in information theory</title><addtitle>JSAIT</addtitle><description>We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.</description><subject>Algorithms</subject><subject>Causal discovery</subject><subject>Covariance matrices</subject><subject>Datasets</subject><subject>Gaussian processes</subject><subject>Gene expression</subject><subject>Graph theory</subject><subject>interventions</subject><subject>linear structural equation model</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Polytrees</subject><subject>Synthetic data</subject><subject>Tree graphs</subject><issn>2641-8770</issn><issn>2641-8770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGr_gHhY8Lx18tF84KkUrZUVBSsewzadaErN1mQr9N-7tR56mvfwPjPMQ8glhSGlYG4eX8ez-ZAB40POmRbMnJAek4KWWik4PcrnZJDzCgAYo0Jp1SO3FdYphvhRVCF2sZjW25xDHYuXZr1rE2Lx1CxxnYv30H4Ws9hi-sHYhibmC3Lm63XGwf_sk7f7u_nkoayep7PJuCodlawtmZKeaqeF1t55DmKhkXMxAnBCSs1R1AuhlnLpJYiR42LhmPFMKqepAYe8T64Pezep-d5ibu2q2abYnbRMG9q9o8Soa7FDy6Um54TeblL4qtPOUrB7T_bPk917sv-eOujqAAVEPAKYMRoo_wX8R2Kt</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tramontano, Daniele</creator><creator>Waldmann, L.</creator><creator>Drton, M.</creator><creator>Duarte, Eliana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5614-3025</orcidid><orcidid>https://orcid.org/0009-0006-9302-0781</orcidid><orcidid>https://orcid.org/0000-0002-0742-4151</orcidid></search><sort><creationdate>2023</creationdate><title>Learning Linear Gaussian Polytree Models With Interventions</title><author>Tramontano, Daniele ; Waldmann, L. ; Drton, M. ; Duarte, Eliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Causal discovery</topic><topic>Covariance matrices</topic><topic>Datasets</topic><topic>Gaussian processes</topic><topic>Gene expression</topic><topic>Graph theory</topic><topic>interventions</topic><topic>linear structural equation model</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Polytrees</topic><topic>Synthetic data</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tramontano, Daniele</creatorcontrib><creatorcontrib>Waldmann, L.</creatorcontrib><creatorcontrib>Drton, M.</creatorcontrib><creatorcontrib>Duarte, Eliana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on selected areas in information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tramontano, Daniele</au><au>Waldmann, L.</au><au>Drton, M.</au><au>Duarte, Eliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Linear Gaussian Polytree Models With Interventions</atitle><jtitle>IEEE journal on selected areas in information theory</jtitle><stitle>JSAIT</stitle><date>2023</date><risdate>2023</risdate><volume>4</volume><spage>569</spage><epage>578</epage><pages>569-578</pages><issn>2641-8770</issn><eissn>2641-8770</eissn><coden>IJSTL5</coden><abstract>We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSAIT.2023.3328429</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5614-3025</orcidid><orcidid>https://orcid.org/0009-0006-9302-0781</orcidid><orcidid>https://orcid.org/0000-0002-0742-4151</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2641-8770
ispartof IEEE journal on selected areas in information theory, 2023, Vol.4, p.569-578
issn 2641-8770
2641-8770
language eng
recordid cdi_ieee_primary_10299801
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Causal discovery
Covariance matrices
Datasets
Gaussian processes
Gene expression
Graph theory
interventions
linear structural equation model
Markov processes
Mathematical models
Optimization
Polytrees
Synthetic data
Tree graphs
title Learning Linear Gaussian Polytree Models With Interventions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Linear%20Gaussian%20Polytree%20Models%20With%20Interventions&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20information%20theory&rft.au=Tramontano,%20Daniele&rft.date=2023&rft.volume=4&rft.spage=569&rft.epage=578&rft.pages=569-578&rft.issn=2641-8770&rft.eissn=2641-8770&rft.coden=IJSTL5&rft_id=info:doi/10.1109/JSAIT.2023.3328429&rft_dat=%3Cproquest_ieee_%3E2891000745%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891000745&rft_id=info:pmid/&rft_ieee_id=10299801&rfr_iscdi=true