Loading…
Learning Linear Gaussian Polytree Models With Interventions
We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG rep...
Saved in:
Published in: | IEEE journal on selected areas in information theory 2023, Vol.4, p.569-578 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3 |
container_end_page | 578 |
container_issue | |
container_start_page | 569 |
container_title | IEEE journal on selected areas in information theory |
container_volume | 4 |
creator | Tramontano, Daniele Waldmann, L. Drton, M. Duarte, Eliana |
description | We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes. |
doi_str_mv | 10.1109/JSAIT.2023.3328429 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10299801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10299801</ieee_id><sourcerecordid>2891000745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGr_gHhY8Lx18tF84KkUrZUVBSsewzadaErN1mQr9N-7tR56mvfwPjPMQ8glhSGlYG4eX8ez-ZAB40POmRbMnJAek4KWWik4PcrnZJDzCgAYo0Jp1SO3FdYphvhRVCF2sZjW25xDHYuXZr1rE2Lx1CxxnYv30H4Ws9hi-sHYhibmC3Lm63XGwf_sk7f7u_nkoayep7PJuCodlawtmZKeaqeF1t55DmKhkXMxAnBCSs1R1AuhlnLpJYiR42LhmPFMKqepAYe8T64Pezep-d5ibu2q2abYnbRMG9q9o8Soa7FDy6Um54TeblL4qtPOUrB7T_bPk917sv-eOujqAAVEPAKYMRoo_wX8R2Kt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891000745</pqid></control><display><type>article</type><title>Learning Linear Gaussian Polytree Models With Interventions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tramontano, Daniele ; Waldmann, L. ; Drton, M. ; Duarte, Eliana</creator><creatorcontrib>Tramontano, Daniele ; Waldmann, L. ; Drton, M. ; Duarte, Eliana</creatorcontrib><description>We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.</description><identifier>ISSN: 2641-8770</identifier><identifier>EISSN: 2641-8770</identifier><identifier>DOI: 10.1109/JSAIT.2023.3328429</identifier><identifier>CODEN: IJSTL5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Causal discovery ; Covariance matrices ; Datasets ; Gaussian processes ; Gene expression ; Graph theory ; interventions ; linear structural equation model ; Markov processes ; Mathematical models ; Optimization ; Polytrees ; Synthetic data ; Tree graphs</subject><ispartof>IEEE journal on selected areas in information theory, 2023, Vol.4, p.569-578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3</cites><orcidid>0000-0001-5614-3025 ; 0009-0006-9302-0781 ; 0000-0002-0742-4151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10299801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tramontano, Daniele</creatorcontrib><creatorcontrib>Waldmann, L.</creatorcontrib><creatorcontrib>Drton, M.</creatorcontrib><creatorcontrib>Duarte, Eliana</creatorcontrib><title>Learning Linear Gaussian Polytree Models With Interventions</title><title>IEEE journal on selected areas in information theory</title><addtitle>JSAIT</addtitle><description>We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.</description><subject>Algorithms</subject><subject>Causal discovery</subject><subject>Covariance matrices</subject><subject>Datasets</subject><subject>Gaussian processes</subject><subject>Gene expression</subject><subject>Graph theory</subject><subject>interventions</subject><subject>linear structural equation model</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Polytrees</subject><subject>Synthetic data</subject><subject>Tree graphs</subject><issn>2641-8770</issn><issn>2641-8770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGr_gHhY8Lx18tF84KkUrZUVBSsewzadaErN1mQr9N-7tR56mvfwPjPMQ8glhSGlYG4eX8ez-ZAB40POmRbMnJAek4KWWik4PcrnZJDzCgAYo0Jp1SO3FdYphvhRVCF2sZjW25xDHYuXZr1rE2Lx1CxxnYv30H4Ws9hi-sHYhibmC3Lm63XGwf_sk7f7u_nkoayep7PJuCodlawtmZKeaqeF1t55DmKhkXMxAnBCSs1R1AuhlnLpJYiR42LhmPFMKqepAYe8T64Pezep-d5ibu2q2abYnbRMG9q9o8Soa7FDy6Um54TeblL4qtPOUrB7T_bPk917sv-eOujqAAVEPAKYMRoo_wX8R2Kt</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tramontano, Daniele</creator><creator>Waldmann, L.</creator><creator>Drton, M.</creator><creator>Duarte, Eliana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5614-3025</orcidid><orcidid>https://orcid.org/0009-0006-9302-0781</orcidid><orcidid>https://orcid.org/0000-0002-0742-4151</orcidid></search><sort><creationdate>2023</creationdate><title>Learning Linear Gaussian Polytree Models With Interventions</title><author>Tramontano, Daniele ; Waldmann, L. ; Drton, M. ; Duarte, Eliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Causal discovery</topic><topic>Covariance matrices</topic><topic>Datasets</topic><topic>Gaussian processes</topic><topic>Gene expression</topic><topic>Graph theory</topic><topic>interventions</topic><topic>linear structural equation model</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Polytrees</topic><topic>Synthetic data</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tramontano, Daniele</creatorcontrib><creatorcontrib>Waldmann, L.</creatorcontrib><creatorcontrib>Drton, M.</creatorcontrib><creatorcontrib>Duarte, Eliana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on selected areas in information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tramontano, Daniele</au><au>Waldmann, L.</au><au>Drton, M.</au><au>Duarte, Eliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Linear Gaussian Polytree Models With Interventions</atitle><jtitle>IEEE journal on selected areas in information theory</jtitle><stitle>JSAIT</stitle><date>2023</date><risdate>2023</risdate><volume>4</volume><spage>569</spage><epage>578</epage><pages>569-578</pages><issn>2641-8770</issn><eissn>2641-8770</eissn><coden>IJSTL5</coden><abstract>We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSAIT.2023.3328429</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5614-3025</orcidid><orcidid>https://orcid.org/0009-0006-9302-0781</orcidid><orcidid>https://orcid.org/0000-0002-0742-4151</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2641-8770 |
ispartof | IEEE journal on selected areas in information theory, 2023, Vol.4, p.569-578 |
issn | 2641-8770 2641-8770 |
language | eng |
recordid | cdi_ieee_primary_10299801 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Causal discovery Covariance matrices Datasets Gaussian processes Gene expression Graph theory interventions linear structural equation model Markov processes Mathematical models Optimization Polytrees Synthetic data Tree graphs |
title | Learning Linear Gaussian Polytree Models With Interventions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Linear%20Gaussian%20Polytree%20Models%20With%20Interventions&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20information%20theory&rft.au=Tramontano,%20Daniele&rft.date=2023&rft.volume=4&rft.spage=569&rft.epage=578&rft.pages=569-578&rft.issn=2641-8770&rft.eissn=2641-8770&rft.coden=IJSTL5&rft_id=info:doi/10.1109/JSAIT.2023.3328429&rft_dat=%3Cproquest_ieee_%3E2891000745%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c162t-276f18c8488fcf304b8e334500c46683e4ab47d6df6045c34bc29f267c8190ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891000745&rft_id=info:pmid/&rft_ieee_id=10299801&rfr_iscdi=true |