Loading…
JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering
With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental he...
Saved in:
Published in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2024, Vol.32, p.352-363 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183 |
container_end_page | 363 |
container_issue | |
container_start_page | 352 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 32 |
creator | Zhao, Yun Liu, Dexi Wan, Changxuan Liu, Xiping Nie, Jian-yun Liu, Jiaming |
description | With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods. |
doi_str_mv | 10.1109/TASLP.2023.3329295 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10304386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304386</ieee_id><sourcerecordid>2890993326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOa-gPgQ8LkzN2nTxrcy1Dnmn7H5HNr01mXMdqYZ4rc3dRN8uofLOfcefoRcAhsDMHWzypfz1zFnXIyF4Iqr5IQMeFCREiw-_dNcsXMy6roNYwxYqlQaD8jz7GkZLfJbmtNZaxtPpxZd4czammJL8154NH7vkNato0_Y-LCfYrH1a7rYY-dt29C86b7Q2eb9gpzVxbbD0XEOydv93WoyjeYvD4-TfB4ZHqc-ApCxTCHhIKtUJiCwylQsqyrUAkgSyVmdxlUhTCkTg2WZZQC1KsqyEglCJobk-nB359rPvoXetHvXhJeaZ4opFUDI4OIHl3Ft1zms9c7Zj8J9a2C6R6d_0ekenT6iC6GrQ8gi4r9AQCkyKX4AZ31oRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890993326</pqid></control><display><type>article</type><title>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Zhao, Yun ; Liu, Dexi ; Wan, Changxuan ; Liu, Xiping ; Nie, Jian-yun ; Liu, Jiaming</creator><creatorcontrib>Zhao, Yun ; Liu, Dexi ; Wan, Changxuan ; Liu, Xiping ; Nie, Jian-yun ; Liu, Jiaming</creatorcontrib><description>With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2023.3329295</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>dataset ; Developing countries ; latent signal ; LDCs ; Mental health ; neural networks ; Question answering (information retrieval) ; question-answering ; Questions ; Semantics ; Speech processing ; Task analysis ; Training</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2024, Vol.32, p.352-363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183</cites><orcidid>0000-0002-0333-4474 ; 0000-0003-1093-2744 ; 0000-0002-6222-1015 ; 0009-0003-5006-1055 ; 0000-0003-1556-3335 ; 0000-0002-0230-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Liu, Dexi</creatorcontrib><creatorcontrib>Wan, Changxuan</creatorcontrib><creatorcontrib>Liu, Xiping</creatorcontrib><creatorcontrib>Nie, Jian-yun</creatorcontrib><creatorcontrib>Liu, Jiaming</creatorcontrib><title>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.</description><subject>dataset</subject><subject>Developing countries</subject><subject>latent signal</subject><subject>LDCs</subject><subject>Mental health</subject><subject>neural networks</subject><subject>Question answering (information retrieval)</subject><subject>question-answering</subject><subject>Questions</subject><subject>Semantics</subject><subject>Speech processing</subject><subject>Task analysis</subject><subject>Training</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMoOOa-gPgQ8LkzN2nTxrcy1Dnmn7H5HNr01mXMdqYZ4rc3dRN8uofLOfcefoRcAhsDMHWzypfz1zFnXIyF4Iqr5IQMeFCREiw-_dNcsXMy6roNYwxYqlQaD8jz7GkZLfJbmtNZaxtPpxZd4czammJL8154NH7vkNato0_Y-LCfYrH1a7rYY-dt29C86b7Q2eb9gpzVxbbD0XEOydv93WoyjeYvD4-TfB4ZHqc-ApCxTCHhIKtUJiCwylQsqyrUAkgSyVmdxlUhTCkTg2WZZQC1KsqyEglCJobk-nB359rPvoXetHvXhJeaZ4opFUDI4OIHl3Ft1zms9c7Zj8J9a2C6R6d_0ekenT6iC6GrQ8gi4r9AQCkyKX4AZ31oRg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Yun</creator><creator>Liu, Dexi</creator><creator>Wan, Changxuan</creator><creator>Liu, Xiping</creator><creator>Nie, Jian-yun</creator><creator>Liu, Jiaming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0333-4474</orcidid><orcidid>https://orcid.org/0000-0003-1093-2744</orcidid><orcidid>https://orcid.org/0000-0002-6222-1015</orcidid><orcidid>https://orcid.org/0009-0003-5006-1055</orcidid><orcidid>https://orcid.org/0000-0003-1556-3335</orcidid><orcidid>https://orcid.org/0000-0002-0230-8004</orcidid></search><sort><creationdate>2024</creationdate><title>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</title><author>Zhao, Yun ; Liu, Dexi ; Wan, Changxuan ; Liu, Xiping ; Nie, Jian-yun ; Liu, Jiaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>dataset</topic><topic>Developing countries</topic><topic>latent signal</topic><topic>LDCs</topic><topic>Mental health</topic><topic>neural networks</topic><topic>Question answering (information retrieval)</topic><topic>question-answering</topic><topic>Questions</topic><topic>Semantics</topic><topic>Speech processing</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Liu, Dexi</creatorcontrib><creatorcontrib>Wan, Changxuan</creatorcontrib><creatorcontrib>Liu, Xiping</creatorcontrib><creatorcontrib>Nie, Jian-yun</creatorcontrib><creatorcontrib>Liu, Jiaming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yun</au><au>Liu, Dexi</au><au>Wan, Changxuan</au><au>Liu, Xiping</au><au>Nie, Jian-yun</au><au>Liu, Jiaming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>352</spage><epage>363</epage><pages>352-363</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2023.3329295</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0333-4474</orcidid><orcidid>https://orcid.org/0000-0003-1093-2744</orcidid><orcidid>https://orcid.org/0000-0002-6222-1015</orcidid><orcidid>https://orcid.org/0009-0003-5006-1055</orcidid><orcidid>https://orcid.org/0000-0003-1556-3335</orcidid><orcidid>https://orcid.org/0000-0002-0230-8004</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2024, Vol.32, p.352-363 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_ieee_primary_10304386 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | dataset Developing countries latent signal LDCs Mental health neural networks Question answering (information retrieval) question-answering Questions Semantics Speech processing Task analysis Training |
title | JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JMS-QA:%20A%20Joint%20Hierarchical%20Architecture%20for%20Mental%20Health%20Question%20Answering&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Zhao,%20Yun&rft.date=2024&rft.volume=32&rft.spage=352&rft.epage=363&rft.pages=352-363&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2023.3329295&rft_dat=%3Cproquest_ieee_%3E2890993326%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890993326&rft_id=info:pmid/&rft_ieee_id=10304386&rfr_iscdi=true |