Loading…

JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering

With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental he...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2024, Vol.32, p.352-363
Main Authors: Zhao, Yun, Liu, Dexi, Wan, Changxuan, Liu, Xiping, Nie, Jian-yun, Liu, Jiaming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183
container_end_page 363
container_issue
container_start_page 352
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 32
creator Zhao, Yun
Liu, Dexi
Wan, Changxuan
Liu, Xiping
Nie, Jian-yun
Liu, Jiaming
description With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.
doi_str_mv 10.1109/TASLP.2023.3329295
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10304386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304386</ieee_id><sourcerecordid>2890993326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOa-gPgQ8LkzN2nTxrcy1Dnmn7H5HNr01mXMdqYZ4rc3dRN8uofLOfcefoRcAhsDMHWzypfz1zFnXIyF4Iqr5IQMeFCREiw-_dNcsXMy6roNYwxYqlQaD8jz7GkZLfJbmtNZaxtPpxZd4czammJL8154NH7vkNato0_Y-LCfYrH1a7rYY-dt29C86b7Q2eb9gpzVxbbD0XEOydv93WoyjeYvD4-TfB4ZHqc-ApCxTCHhIKtUJiCwylQsqyrUAkgSyVmdxlUhTCkTg2WZZQC1KsqyEglCJobk-nB359rPvoXetHvXhJeaZ4opFUDI4OIHl3Ft1zms9c7Zj8J9a2C6R6d_0ekenT6iC6GrQ8gi4r9AQCkyKX4AZ31oRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890993326</pqid></control><display><type>article</type><title>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Zhao, Yun ; Liu, Dexi ; Wan, Changxuan ; Liu, Xiping ; Nie, Jian-yun ; Liu, Jiaming</creator><creatorcontrib>Zhao, Yun ; Liu, Dexi ; Wan, Changxuan ; Liu, Xiping ; Nie, Jian-yun ; Liu, Jiaming</creatorcontrib><description>With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2023.3329295</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>dataset ; Developing countries ; latent signal ; LDCs ; Mental health ; neural networks ; Question answering (information retrieval) ; question-answering ; Questions ; Semantics ; Speech processing ; Task analysis ; Training</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2024, Vol.32, p.352-363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183</cites><orcidid>0000-0002-0333-4474 ; 0000-0003-1093-2744 ; 0000-0002-6222-1015 ; 0009-0003-5006-1055 ; 0000-0003-1556-3335 ; 0000-0002-0230-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Liu, Dexi</creatorcontrib><creatorcontrib>Wan, Changxuan</creatorcontrib><creatorcontrib>Liu, Xiping</creatorcontrib><creatorcontrib>Nie, Jian-yun</creatorcontrib><creatorcontrib>Liu, Jiaming</creatorcontrib><title>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.</description><subject>dataset</subject><subject>Developing countries</subject><subject>latent signal</subject><subject>LDCs</subject><subject>Mental health</subject><subject>neural networks</subject><subject>Question answering (information retrieval)</subject><subject>question-answering</subject><subject>Questions</subject><subject>Semantics</subject><subject>Speech processing</subject><subject>Task analysis</subject><subject>Training</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMoOOa-gPgQ8LkzN2nTxrcy1Dnmn7H5HNr01mXMdqYZ4rc3dRN8uofLOfcefoRcAhsDMHWzypfz1zFnXIyF4Iqr5IQMeFCREiw-_dNcsXMy6roNYwxYqlQaD8jz7GkZLfJbmtNZaxtPpxZd4czammJL8154NH7vkNato0_Y-LCfYrH1a7rYY-dt29C86b7Q2eb9gpzVxbbD0XEOydv93WoyjeYvD4-TfB4ZHqc-ApCxTCHhIKtUJiCwylQsqyrUAkgSyVmdxlUhTCkTg2WZZQC1KsqyEglCJobk-nB359rPvoXetHvXhJeaZ4opFUDI4OIHl3Ft1zms9c7Zj8J9a2C6R6d_0ekenT6iC6GrQ8gi4r9AQCkyKX4AZ31oRg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Yun</creator><creator>Liu, Dexi</creator><creator>Wan, Changxuan</creator><creator>Liu, Xiping</creator><creator>Nie, Jian-yun</creator><creator>Liu, Jiaming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0333-4474</orcidid><orcidid>https://orcid.org/0000-0003-1093-2744</orcidid><orcidid>https://orcid.org/0000-0002-6222-1015</orcidid><orcidid>https://orcid.org/0009-0003-5006-1055</orcidid><orcidid>https://orcid.org/0000-0003-1556-3335</orcidid><orcidid>https://orcid.org/0000-0002-0230-8004</orcidid></search><sort><creationdate>2024</creationdate><title>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</title><author>Zhao, Yun ; Liu, Dexi ; Wan, Changxuan ; Liu, Xiping ; Nie, Jian-yun ; Liu, Jiaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>dataset</topic><topic>Developing countries</topic><topic>latent signal</topic><topic>LDCs</topic><topic>Mental health</topic><topic>neural networks</topic><topic>Question answering (information retrieval)</topic><topic>question-answering</topic><topic>Questions</topic><topic>Semantics</topic><topic>Speech processing</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Liu, Dexi</creatorcontrib><creatorcontrib>Wan, Changxuan</creatorcontrib><creatorcontrib>Liu, Xiping</creatorcontrib><creatorcontrib>Nie, Jian-yun</creatorcontrib><creatorcontrib>Liu, Jiaming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yun</au><au>Liu, Dexi</au><au>Wan, Changxuan</au><au>Liu, Xiping</au><au>Nie, Jian-yun</au><au>Liu, Jiaming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>352</spage><epage>363</epage><pages>352-363</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>With the increasing scale of mental health problems in modern society, the scarcity of professional assistance is alarming, especially in developing countries. To address this, some online forums have emerged to provide users with useful information and help. However, a user grappling with mental health problems often struggles to find the needed information and assistance on these forums. This is primarily due to the limitations of existing search approaches that often fail to take the characteristics of mental health text into account. In this paper, we propose a new task of mental-health-oriented question-answering (MHQA) which aims to retrieve the appropriate responses for a question post by incorporating the important criteria related to mental health. Our proposed approach, JMS-QA, matches the question post and candidate responses while jointly detecting their latent mental health signals. This enables the method to incorporate mental health signals into its representations. To test the effectiveness of our approach, we create a new dataset for MHQA and conduct experiments on it. The experimental results show that JMS-QA outperforms existing state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2023.3329295</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0333-4474</orcidid><orcidid>https://orcid.org/0000-0003-1093-2744</orcidid><orcidid>https://orcid.org/0000-0002-6222-1015</orcidid><orcidid>https://orcid.org/0009-0003-5006-1055</orcidid><orcidid>https://orcid.org/0000-0003-1556-3335</orcidid><orcidid>https://orcid.org/0000-0002-0230-8004</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2024, Vol.32, p.352-363
issn 2329-9290
2329-9304
language eng
recordid cdi_ieee_primary_10304386
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects dataset
Developing countries
latent signal
LDCs
Mental health
neural networks
Question answering (information retrieval)
question-answering
Questions
Semantics
Speech processing
Task analysis
Training
title JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JMS-QA:%20A%20Joint%20Hierarchical%20Architecture%20for%20Mental%20Health%20Question%20Answering&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Zhao,%20Yun&rft.date=2024&rft.volume=32&rft.spage=352&rft.epage=363&rft.pages=352-363&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2023.3329295&rft_dat=%3Cproquest_ieee_%3E2890993326%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-11646715216d76513ed8946dd0791155620f74da3cb65cebb8811f9abbd35e183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890993326&rft_id=info:pmid/&rft_ieee_id=10304386&rfr_iscdi=true