Loading…

Cluster Dominance Analysis of Strength Training Motion Characteristics

This paper presents an approach to analyze clusters as a means to determine the characteristics of strength training motion patterns. The proposed method emphasizes the observation of dominance sequences within clusters and is reinforced by the formation of specific characteristics within each clust...

Full description

Saved in:
Bibliographic Details
Main Authors: Toba, Hapnes, Wianto, Elizabeth, Malinda, Maya, Al Halim, Agung Wijaya, Chen, Chien-Hsu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1128
container_issue
container_start_page 1125
container_title
container_volume
creator Toba, Hapnes
Wianto, Elizabeth
Malinda, Maya
Al Halim, Agung Wijaya
Chen, Chien-Hsu
description This paper presents an approach to analyze clusters as a means to determine the characteristics of strength training motion patterns. The proposed method emphasizes the observation of dominance sequences within clusters and is reinforced by the formation of specific characteristics within each cluster. Data collection is performed using video-guided strength training exercises equipped with 1 kg dumbbells and recorded by a sensor embedded in smartwatches. The analysis method involves applying the concept of density affinity, which calculates the density ratio of clusters to the recognized motions. Subsequently, the dominance sequence is observed to identify which clusters exhibit distinct characteristics, ultimately determining the intended motions. The research findings demonstrate the potential for further investigation into a more comprehensive understanding of motion patterns, leading to the development of models that can be integrated into mobile devices or smartwatches.
doi_str_mv 10.1109/GCCE59613.2023.10315252
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10315252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10315252</ieee_id><sourcerecordid>10315252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-1ede86ee7eaf9ebe3b0808c8b5df86b45fd421cd9d375f250368f64f3072d7d63</originalsourceid><addsrcrecordid>eNo1j8FOAyEURdHExKbOH5jID8z4gIGBZTO21aTGhXXdMMOjxbSMAVz0722iru7qnJxLyAODhjEwj-u-X0qjmGg4cNEwEExyya9IZTqjhQTRAtPsmsy4MqIGLdtbUuX8CQBcAjeKz8iqP37ngok-TacQbRyRLqI9nnPIdPL0vSSM-3Kg22RDDHFPX6cSpkj7g012vIAhlzDmO3Lj7TFj9bdz8rFabvvnevO2fukXmzowZkrN0KFWiB1ab3BAMYAGPepBOq_V0ErvWs5GZ5zopL9ECqW9ar2AjrvOKTEn97_egIi7rxRONp13_9fFD4cXToI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cluster Dominance Analysis of Strength Training Motion Characteristics</title><source>IEEE Xplore All Conference Series</source><creator>Toba, Hapnes ; Wianto, Elizabeth ; Malinda, Maya ; Al Halim, Agung Wijaya ; Chen, Chien-Hsu</creator><creatorcontrib>Toba, Hapnes ; Wianto, Elizabeth ; Malinda, Maya ; Al Halim, Agung Wijaya ; Chen, Chien-Hsu</creatorcontrib><description>This paper presents an approach to analyze clusters as a means to determine the characteristics of strength training motion patterns. The proposed method emphasizes the observation of dominance sequences within clusters and is reinforced by the formation of specific characteristics within each cluster. Data collection is performed using video-guided strength training exercises equipped with 1 kg dumbbells and recorded by a sensor embedded in smartwatches. The analysis method involves applying the concept of density affinity, which calculates the density ratio of clusters to the recognized motions. Subsequently, the dominance sequence is observed to identify which clusters exhibit distinct characteristics, ultimately determining the intended motions. The research findings demonstrate the potential for further investigation into a more comprehensive understanding of motion patterns, leading to the development of models that can be integrated into mobile devices or smartwatches.</description><identifier>EISSN: 2693-0854</identifier><identifier>EISBN: 9798350340181</identifier><identifier>DOI: 10.1109/GCCE59613.2023.10315252</identifier><language>eng</language><publisher>IEEE</publisher><subject>cluster analysis ; Consumer electronics ; Data collection ; density affinity ; Electric potential ; Mobile handsets ; motion patterns ; smartwatch ; strength training motion ; Training</subject><ispartof>2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), 2023, p.1125-1128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10315252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10315252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Toba, Hapnes</creatorcontrib><creatorcontrib>Wianto, Elizabeth</creatorcontrib><creatorcontrib>Malinda, Maya</creatorcontrib><creatorcontrib>Al Halim, Agung Wijaya</creatorcontrib><creatorcontrib>Chen, Chien-Hsu</creatorcontrib><title>Cluster Dominance Analysis of Strength Training Motion Characteristics</title><title>2023 IEEE 12th Global Conference on Consumer Electronics (GCCE)</title><addtitle>GCCE</addtitle><description>This paper presents an approach to analyze clusters as a means to determine the characteristics of strength training motion patterns. The proposed method emphasizes the observation of dominance sequences within clusters and is reinforced by the formation of specific characteristics within each cluster. Data collection is performed using video-guided strength training exercises equipped with 1 kg dumbbells and recorded by a sensor embedded in smartwatches. The analysis method involves applying the concept of density affinity, which calculates the density ratio of clusters to the recognized motions. Subsequently, the dominance sequence is observed to identify which clusters exhibit distinct characteristics, ultimately determining the intended motions. The research findings demonstrate the potential for further investigation into a more comprehensive understanding of motion patterns, leading to the development of models that can be integrated into mobile devices or smartwatches.</description><subject>cluster analysis</subject><subject>Consumer electronics</subject><subject>Data collection</subject><subject>density affinity</subject><subject>Electric potential</subject><subject>Mobile handsets</subject><subject>motion patterns</subject><subject>smartwatch</subject><subject>strength training motion</subject><subject>Training</subject><issn>2693-0854</issn><isbn>9798350340181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FOAyEURdHExKbOH5jID8z4gIGBZTO21aTGhXXdMMOjxbSMAVz0722iru7qnJxLyAODhjEwj-u-X0qjmGg4cNEwEExyya9IZTqjhQTRAtPsmsy4MqIGLdtbUuX8CQBcAjeKz8iqP37ngok-TacQbRyRLqI9nnPIdPL0vSSM-3Kg22RDDHFPX6cSpkj7g012vIAhlzDmO3Lj7TFj9bdz8rFabvvnevO2fukXmzowZkrN0KFWiB1ab3BAMYAGPepBOq_V0ErvWs5GZ5zopL9ECqW9ar2AjrvOKTEn97_egIi7rxRONp13_9fFD4cXToI</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Toba, Hapnes</creator><creator>Wianto, Elizabeth</creator><creator>Malinda, Maya</creator><creator>Al Halim, Agung Wijaya</creator><creator>Chen, Chien-Hsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231010</creationdate><title>Cluster Dominance Analysis of Strength Training Motion Characteristics</title><author>Toba, Hapnes ; Wianto, Elizabeth ; Malinda, Maya ; Al Halim, Agung Wijaya ; Chen, Chien-Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-1ede86ee7eaf9ebe3b0808c8b5df86b45fd421cd9d375f250368f64f3072d7d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cluster analysis</topic><topic>Consumer electronics</topic><topic>Data collection</topic><topic>density affinity</topic><topic>Electric potential</topic><topic>Mobile handsets</topic><topic>motion patterns</topic><topic>smartwatch</topic><topic>strength training motion</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Toba, Hapnes</creatorcontrib><creatorcontrib>Wianto, Elizabeth</creatorcontrib><creatorcontrib>Malinda, Maya</creatorcontrib><creatorcontrib>Al Halim, Agung Wijaya</creatorcontrib><creatorcontrib>Chen, Chien-Hsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toba, Hapnes</au><au>Wianto, Elizabeth</au><au>Malinda, Maya</au><au>Al Halim, Agung Wijaya</au><au>Chen, Chien-Hsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cluster Dominance Analysis of Strength Training Motion Characteristics</atitle><btitle>2023 IEEE 12th Global Conference on Consumer Electronics (GCCE)</btitle><stitle>GCCE</stitle><date>2023-10-10</date><risdate>2023</risdate><spage>1125</spage><epage>1128</epage><pages>1125-1128</pages><eissn>2693-0854</eissn><eisbn>9798350340181</eisbn><abstract>This paper presents an approach to analyze clusters as a means to determine the characteristics of strength training motion patterns. The proposed method emphasizes the observation of dominance sequences within clusters and is reinforced by the formation of specific characteristics within each cluster. Data collection is performed using video-guided strength training exercises equipped with 1 kg dumbbells and recorded by a sensor embedded in smartwatches. The analysis method involves applying the concept of density affinity, which calculates the density ratio of clusters to the recognized motions. Subsequently, the dominance sequence is observed to identify which clusters exhibit distinct characteristics, ultimately determining the intended motions. The research findings demonstrate the potential for further investigation into a more comprehensive understanding of motion patterns, leading to the development of models that can be integrated into mobile devices or smartwatches.</abstract><pub>IEEE</pub><doi>10.1109/GCCE59613.2023.10315252</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2693-0854
ispartof 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), 2023, p.1125-1128
issn 2693-0854
language eng
recordid cdi_ieee_primary_10315252
source IEEE Xplore All Conference Series
subjects cluster analysis
Consumer electronics
Data collection
density affinity
Electric potential
Mobile handsets
motion patterns
smartwatch
strength training motion
Training
title Cluster Dominance Analysis of Strength Training Motion Characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cluster%20Dominance%20Analysis%20of%20Strength%20Training%20Motion%20Characteristics&rft.btitle=2023%20IEEE%2012th%20Global%20Conference%20on%20Consumer%20Electronics%20(GCCE)&rft.au=Toba,%20Hapnes&rft.date=2023-10-10&rft.spage=1125&rft.epage=1128&rft.pages=1125-1128&rft.eissn=2693-0854&rft_id=info:doi/10.1109/GCCE59613.2023.10315252&rft.eisbn=9798350340181&rft_dat=%3Cieee_CHZPO%3E10315252%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-1ede86ee7eaf9ebe3b0808c8b5df86b45fd421cd9d375f250368f64f3072d7d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10315252&rfr_iscdi=true