Loading…
Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints
This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1404 |
container_issue | |
container_start_page | 1399 |
container_title | |
container_volume | |
creator | Pei, Shuo Zheng, Xin Jiang, Xiangdong Li, Zheng Yao, Weiran |
description | This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%. |
doi_str_mv | 10.1109/ICUS58632.2023.10318453 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10318453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318453</ieee_id><sourcerecordid>10318453</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-69f40f94d7176ba04a688185ca609756159f570f2a581c4eef34d564fcc02223</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhFdBsNS8gWBeIPWc_d_LGrQWWgSbXpdtsltXYhJ2o-Dbm6JefTMMMxdDyB3CAhHM_brc74SWjC4oULZAYKi5YBckM8poJiYvqaGXZEaVwkIxRa9JltI7ADAKHLWakd0yxGIV-8-uycu-be2xj3YMXy7f2mEI3Sl_sMk1ed_lr-4UJmztWL-dg33XuJhXLkYbuqncpfGsxnRDrrxtk8v-OCfV02NVPhebl9W6XG6KgGjGQhrPwRveKFTyaIFbqTVqUVsJRgmJwnihwFMrNNbcOc94IyT3dQ2UUjYnt7-zwTl3GGL4sPH78H8D-wErJVEa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</title><source>IEEE Xplore All Conference Series</source><creator>Pei, Shuo ; Zheng, Xin ; Jiang, Xiangdong ; Li, Zheng ; Yao, Weiran</creator><creatorcontrib>Pei, Shuo ; Zheng, Xin ; Jiang, Xiangdong ; Li, Zheng ; Yao, Weiran</creatorcontrib><description>This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.</description><identifier>EISSN: 2771-7372</identifier><identifier>EISBN: 9798350316292</identifier><identifier>EISBN: 9798350316308</identifier><identifier>DOI: 10.1109/ICUS58632.2023.10318453</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; collaborative mapping ; Global navigation satellite system ; Laser radar ; LiDAR SLAM ; Lighting ; map fusion ; Point cloud compression ; posture opti-mization ; Simulation ; Simultaneous localization and mapping</subject><ispartof>2023 IEEE International Conference on Unmanned Systems (ICUS), 2023, p.1399-1404</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10318453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pei, Shuo</creatorcontrib><creatorcontrib>Zheng, Xin</creatorcontrib><creatorcontrib>Jiang, Xiangdong</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Yao, Weiran</creatorcontrib><title>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</title><title>2023 IEEE International Conference on Unmanned Systems (ICUS)</title><addtitle>ICUS</addtitle><description>This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.</description><subject>Collaboration</subject><subject>collaborative mapping</subject><subject>Global navigation satellite system</subject><subject>Laser radar</subject><subject>LiDAR SLAM</subject><subject>Lighting</subject><subject>map fusion</subject><subject>Point cloud compression</subject><subject>posture opti-mization</subject><subject>Simulation</subject><subject>Simultaneous localization and mapping</subject><issn>2771-7372</issn><isbn>9798350316292</isbn><isbn>9798350316308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AUhFdBsNS8gWBeIPWc_d_LGrQWWgSbXpdtsltXYhJ2o-Dbm6JefTMMMxdDyB3CAhHM_brc74SWjC4oULZAYKi5YBckM8poJiYvqaGXZEaVwkIxRa9JltI7ADAKHLWakd0yxGIV-8-uycu-be2xj3YMXy7f2mEI3Sl_sMk1ed_lr-4UJmztWL-dg33XuJhXLkYbuqncpfGsxnRDrrxtk8v-OCfV02NVPhebl9W6XG6KgGjGQhrPwRveKFTyaIFbqTVqUVsJRgmJwnihwFMrNNbcOc94IyT3dQ2UUjYnt7-zwTl3GGL4sPH78H8D-wErJVEa</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Pei, Shuo</creator><creator>Zheng, Xin</creator><creator>Jiang, Xiangdong</creator><creator>Li, Zheng</creator><creator>Yao, Weiran</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231013</creationdate><title>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</title><author>Pei, Shuo ; Zheng, Xin ; Jiang, Xiangdong ; Li, Zheng ; Yao, Weiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-69f40f94d7176ba04a688185ca609756159f570f2a581c4eef34d564fcc02223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaboration</topic><topic>collaborative mapping</topic><topic>Global navigation satellite system</topic><topic>Laser radar</topic><topic>LiDAR SLAM</topic><topic>Lighting</topic><topic>map fusion</topic><topic>Point cloud compression</topic><topic>posture opti-mization</topic><topic>Simulation</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Pei, Shuo</creatorcontrib><creatorcontrib>Zheng, Xin</creatorcontrib><creatorcontrib>Jiang, Xiangdong</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Yao, Weiran</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Shuo</au><au>Zheng, Xin</au><au>Jiang, Xiangdong</au><au>Li, Zheng</au><au>Yao, Weiran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</atitle><btitle>2023 IEEE International Conference on Unmanned Systems (ICUS)</btitle><stitle>ICUS</stitle><date>2023-10-13</date><risdate>2023</risdate><spage>1399</spage><epage>1404</epage><pages>1399-1404</pages><eissn>2771-7372</eissn><eisbn>9798350316292</eisbn><eisbn>9798350316308</eisbn><abstract>This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.</abstract><pub>IEEE</pub><doi>10.1109/ICUS58632.2023.10318453</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2771-7372 |
ispartof | 2023 IEEE International Conference on Unmanned Systems (ICUS), 2023, p.1399-1404 |
issn | 2771-7372 |
language | eng |
recordid | cdi_ieee_primary_10318453 |
source | IEEE Xplore All Conference Series |
subjects | Collaboration collaborative mapping Global navigation satellite system Laser radar LiDAR SLAM Lighting map fusion Point cloud compression posture opti-mization Simulation Simultaneous localization and mapping |
title | Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Air-Ground%20Collaborative%20Mapping%20Based%20on%20Region%20Matching%20Under%20Terrain%20Constraints&rft.btitle=2023%20IEEE%20International%20Conference%20on%20Unmanned%20Systems%20(ICUS)&rft.au=Pei,%20Shuo&rft.date=2023-10-13&rft.spage=1399&rft.epage=1404&rft.pages=1399-1404&rft.eissn=2771-7372&rft_id=info:doi/10.1109/ICUS58632.2023.10318453&rft.eisbn=9798350316292&rft.eisbn_list=9798350316308&rft_dat=%3Cieee_CHZPO%3E10318453%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-69f40f94d7176ba04a688185ca609756159f570f2a581c4eef34d564fcc02223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10318453&rfr_iscdi=true |