Loading…

Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints

This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal...

Full description

Saved in:
Bibliographic Details
Main Authors: Pei, Shuo, Zheng, Xin, Jiang, Xiangdong, Li, Zheng, Yao, Weiran
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1404
container_issue
container_start_page 1399
container_title
container_volume
creator Pei, Shuo
Zheng, Xin
Jiang, Xiangdong
Li, Zheng
Yao, Weiran
description This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.
doi_str_mv 10.1109/ICUS58632.2023.10318453
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10318453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318453</ieee_id><sourcerecordid>10318453</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-69f40f94d7176ba04a688185ca609756159f570f2a581c4eef34d564fcc02223</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhFdBsNS8gWBeIPWc_d_LGrQWWgSbXpdtsltXYhJ2o-Dbm6JefTMMMxdDyB3CAhHM_brc74SWjC4oULZAYKi5YBckM8poJiYvqaGXZEaVwkIxRa9JltI7ADAKHLWakd0yxGIV-8-uycu-be2xj3YMXy7f2mEI3Sl_sMk1ed_lr-4UJmztWL-dg33XuJhXLkYbuqncpfGsxnRDrrxtk8v-OCfV02NVPhebl9W6XG6KgGjGQhrPwRveKFTyaIFbqTVqUVsJRgmJwnihwFMrNNbcOc94IyT3dQ2UUjYnt7-zwTl3GGL4sPH78H8D-wErJVEa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</title><source>IEEE Xplore All Conference Series</source><creator>Pei, Shuo ; Zheng, Xin ; Jiang, Xiangdong ; Li, Zheng ; Yao, Weiran</creator><creatorcontrib>Pei, Shuo ; Zheng, Xin ; Jiang, Xiangdong ; Li, Zheng ; Yao, Weiran</creatorcontrib><description>This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.</description><identifier>EISSN: 2771-7372</identifier><identifier>EISBN: 9798350316292</identifier><identifier>EISBN: 9798350316308</identifier><identifier>DOI: 10.1109/ICUS58632.2023.10318453</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; collaborative mapping ; Global navigation satellite system ; Laser radar ; LiDAR SLAM ; Lighting ; map fusion ; Point cloud compression ; posture opti-mization ; Simulation ; Simultaneous localization and mapping</subject><ispartof>2023 IEEE International Conference on Unmanned Systems (ICUS), 2023, p.1399-1404</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10318453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pei, Shuo</creatorcontrib><creatorcontrib>Zheng, Xin</creatorcontrib><creatorcontrib>Jiang, Xiangdong</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Yao, Weiran</creatorcontrib><title>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</title><title>2023 IEEE International Conference on Unmanned Systems (ICUS)</title><addtitle>ICUS</addtitle><description>This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.</description><subject>Collaboration</subject><subject>collaborative mapping</subject><subject>Global navigation satellite system</subject><subject>Laser radar</subject><subject>LiDAR SLAM</subject><subject>Lighting</subject><subject>map fusion</subject><subject>Point cloud compression</subject><subject>posture opti-mization</subject><subject>Simulation</subject><subject>Simultaneous localization and mapping</subject><issn>2771-7372</issn><isbn>9798350316292</isbn><isbn>9798350316308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AUhFdBsNS8gWBeIPWc_d_LGrQWWgSbXpdtsltXYhJ2o-Dbm6JefTMMMxdDyB3CAhHM_brc74SWjC4oULZAYKi5YBckM8poJiYvqaGXZEaVwkIxRa9JltI7ADAKHLWakd0yxGIV-8-uycu-be2xj3YMXy7f2mEI3Sl_sMk1ed_lr-4UJmztWL-dg33XuJhXLkYbuqncpfGsxnRDrrxtk8v-OCfV02NVPhebl9W6XG6KgGjGQhrPwRveKFTyaIFbqTVqUVsJRgmJwnihwFMrNNbcOc94IyT3dQ2UUjYnt7-zwTl3GGL4sPH78H8D-wErJVEa</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Pei, Shuo</creator><creator>Zheng, Xin</creator><creator>Jiang, Xiangdong</creator><creator>Li, Zheng</creator><creator>Yao, Weiran</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231013</creationdate><title>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</title><author>Pei, Shuo ; Zheng, Xin ; Jiang, Xiangdong ; Li, Zheng ; Yao, Weiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-69f40f94d7176ba04a688185ca609756159f570f2a581c4eef34d564fcc02223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaboration</topic><topic>collaborative mapping</topic><topic>Global navigation satellite system</topic><topic>Laser radar</topic><topic>LiDAR SLAM</topic><topic>Lighting</topic><topic>map fusion</topic><topic>Point cloud compression</topic><topic>posture opti-mization</topic><topic>Simulation</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Pei, Shuo</creatorcontrib><creatorcontrib>Zheng, Xin</creatorcontrib><creatorcontrib>Jiang, Xiangdong</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Yao, Weiran</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Shuo</au><au>Zheng, Xin</au><au>Jiang, Xiangdong</au><au>Li, Zheng</au><au>Yao, Weiran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints</atitle><btitle>2023 IEEE International Conference on Unmanned Systems (ICUS)</btitle><stitle>ICUS</stitle><date>2023-10-13</date><risdate>2023</risdate><spage>1399</spage><epage>1404</epage><pages>1399-1404</pages><eissn>2771-7372</eissn><eisbn>9798350316292</eisbn><eisbn>9798350316308</eisbn><abstract>This paper proposes an air-ground collaborative point cloud map fusion and construction framework based on Lidar Odometry And Mapping and Normal Distribution Transform matching, which can still operate normally under low illumination and Global Navigation Satellite System denied conditions. To deal with the localization problem between agents in the absence of initial pose information, this paper designs a matching mechanism based on the front-end and back-end structure. The front-end performs rough matching of the original point cloud, and the back-end achieves fine matching of the map point cloud. A filtering mechanism for spatial overlapping maps is investigated to obtain accurate pose transformation between agents. To demonstrate the feasibility of the design scheme, simulations are conducted in the gazebo environment. The result shows that the error between initial relative pose obtained from mapping and the real setting is under 1.6%.</abstract><pub>IEEE</pub><doi>10.1109/ICUS58632.2023.10318453</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-7372
ispartof 2023 IEEE International Conference on Unmanned Systems (ICUS), 2023, p.1399-1404
issn 2771-7372
language eng
recordid cdi_ieee_primary_10318453
source IEEE Xplore All Conference Series
subjects Collaboration
collaborative mapping
Global navigation satellite system
Laser radar
LiDAR SLAM
Lighting
map fusion
Point cloud compression
posture opti-mization
Simulation
Simultaneous localization and mapping
title Air-Ground Collaborative Mapping Based on Region Matching Under Terrain Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Air-Ground%20Collaborative%20Mapping%20Based%20on%20Region%20Matching%20Under%20Terrain%20Constraints&rft.btitle=2023%20IEEE%20International%20Conference%20on%20Unmanned%20Systems%20(ICUS)&rft.au=Pei,%20Shuo&rft.date=2023-10-13&rft.spage=1399&rft.epage=1404&rft.pages=1399-1404&rft.eissn=2771-7372&rft_id=info:doi/10.1109/ICUS58632.2023.10318453&rft.eisbn=9798350316292&rft.eisbn_list=9798350316308&rft_dat=%3Cieee_CHZPO%3E10318453%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-69f40f94d7176ba04a688185ca609756159f570f2a581c4eef34d564fcc02223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10318453&rfr_iscdi=true