Loading…
Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images
Semantic segmentation of unmanned aerial vehicle (UAV) remote sensing images is a recent research hotspot, offering technical support for diverse types of UAV remote sensing missions. However, unlike general scene images, UAV remote sensing images present inherent challenges. These challenges includ...
Saved in:
Published in: | IEEE journal on miniaturization for air and space systems 2024-03, Vol.5 (1), p.33-41 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1987-b70f018d724311d8effbc270da30e0db25eb1cf2f26231a5418428a90b25b7ed3 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 33 |
container_title | IEEE journal on miniaturization for air and space systems |
container_volume | 5 |
creator | Zhou, Xuanyu Zhou, Lifan Gong, Shengrong Zhang, Haizhen Zhong, Shan Xia, Yu Huang, Yizhou |
description | Semantic segmentation of unmanned aerial vehicle (UAV) remote sensing images is a recent research hotspot, offering technical support for diverse types of UAV remote sensing missions. However, unlike general scene images, UAV remote sensing images present inherent challenges. These challenges include the complexity of backgrounds, substantial variations in target scales, and dense arrangements of small targets, which severely hinder the accuracy of semantic segmentation. To address these issues, we propose a convolutional neural network (CNN) and transformer hybrid network for semantic segmentation of UAV remote sensing images. The proposed network follows an encoder-decoder architecture that merges a transformer-based encoder with a CNN-based decoder. First, we incorporate the Swin transformer as the encoder to address the limitations of CNN in global modeling, mitigating the interference caused by complex background information. Second, to effectively handle the significant changes in target scales, we design the multiscale feature integration module (MFIM) that enhances the multiscale feature representation capability of the network. Finally, the semantic feature fusion module (SFFM) is designed to filter the redundant noise during the feature fusion process, which improves the recognition of small targets and edges. Experimental results demonstrate that the proposed method outperforms other popular methods on the UAVid and Aeroscapes datasets. |
doi_str_mv | 10.1109/JMASS.2023.3332948 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10319338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10319338</ieee_id><sourcerecordid>2930961525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1987-b70f018d724311d8effbc270da30e0db25eb1cf2f26231a5418428a90b25b7ed3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gHgIeN6aTPZP9liK2kqtYFvBU8juTspWN6nJFum3d2t76Gne8N6bgR8ht5wNOWf5w8vraLEYAgMxFEJAHssL0oMkSyPB0_jyTF-TQQgbxhiwWGYSeuRzsi98XdHxfE61rejSaxuM8w16Osf21_kv2q10gY22bV12Yt2gbXVbO0udoavRB33HxrXYWTbUdk2njV5juCFXRn8HHJxmn6yeHpfjSTR7e56OR7Oo5LnMoiJjhnFZZRALziuJxhQlZKzSgiGrCkiw4KUBAykIrpOYyxikzlnnFBlWok_uj3e33v3sMLRq43bedi8V5ILlKU8g6VJwTJXeheDRqK2vG-33ijN1oKj-KaoDRXWi2JXujqUaEc8KgudCSPEHsb1tDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930961525</pqid></control><display><type>article</type><title>Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images</title><source>IEEE Xplore (Online service)</source><creator>Zhou, Xuanyu ; Zhou, Lifan ; Gong, Shengrong ; Zhang, Haizhen ; Zhong, Shan ; Xia, Yu ; Huang, Yizhou</creator><creatorcontrib>Zhou, Xuanyu ; Zhou, Lifan ; Gong, Shengrong ; Zhang, Haizhen ; Zhong, Shan ; Xia, Yu ; Huang, Yizhou</creatorcontrib><description>Semantic segmentation of unmanned aerial vehicle (UAV) remote sensing images is a recent research hotspot, offering technical support for diverse types of UAV remote sensing missions. However, unlike general scene images, UAV remote sensing images present inherent challenges. These challenges include the complexity of backgrounds, substantial variations in target scales, and dense arrangements of small targets, which severely hinder the accuracy of semantic segmentation. To address these issues, we propose a convolutional neural network (CNN) and transformer hybrid network for semantic segmentation of UAV remote sensing images. The proposed network follows an encoder-decoder architecture that merges a transformer-based encoder with a CNN-based decoder. First, we incorporate the Swin transformer as the encoder to address the limitations of CNN in global modeling, mitigating the interference caused by complex background information. Second, to effectively handle the significant changes in target scales, we design the multiscale feature integration module (MFIM) that enhances the multiscale feature representation capability of the network. Finally, the semantic feature fusion module (SFFM) is designed to filter the redundant noise during the feature fusion process, which improves the recognition of small targets and edges. Experimental results demonstrate that the proposed method outperforms other popular methods on the UAVid and Aeroscapes datasets.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2023.3332948</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Autonomous aerial vehicles ; Coders ; Complexity ; Convolutional neural networks ; Feature extraction ; Image segmentation ; Modules ; Remote sensing ; Semantic segmentation ; Semantics ; Swin transformer ; Technical services ; Transformers ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2024-03, Vol.5 (1), p.33-41</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1987-b70f018d724311d8effbc270da30e0db25eb1cf2f26231a5418428a90b25b7ed3</cites><orcidid>0000-0003-0266-2422 ; 0000-0003-0034-6952 ; 0009-0002-0633-694X ; 0000-0001-7665-413X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10319338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Zhou, Xuanyu</creatorcontrib><creatorcontrib>Zhou, Lifan</creatorcontrib><creatorcontrib>Gong, Shengrong</creatorcontrib><creatorcontrib>Zhang, Haizhen</creatorcontrib><creatorcontrib>Zhong, Shan</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Huang, Yizhou</creatorcontrib><title>Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Semantic segmentation of unmanned aerial vehicle (UAV) remote sensing images is a recent research hotspot, offering technical support for diverse types of UAV remote sensing missions. However, unlike general scene images, UAV remote sensing images present inherent challenges. These challenges include the complexity of backgrounds, substantial variations in target scales, and dense arrangements of small targets, which severely hinder the accuracy of semantic segmentation. To address these issues, we propose a convolutional neural network (CNN) and transformer hybrid network for semantic segmentation of UAV remote sensing images. The proposed network follows an encoder-decoder architecture that merges a transformer-based encoder with a CNN-based decoder. First, we incorporate the Swin transformer as the encoder to address the limitations of CNN in global modeling, mitigating the interference caused by complex background information. Second, to effectively handle the significant changes in target scales, we design the multiscale feature integration module (MFIM) that enhances the multiscale feature representation capability of the network. Finally, the semantic feature fusion module (SFFM) is designed to filter the redundant noise during the feature fusion process, which improves the recognition of small targets and edges. Experimental results demonstrate that the proposed method outperforms other popular methods on the UAVid and Aeroscapes datasets.</description><subject>Artificial neural networks</subject><subject>Autonomous aerial vehicles</subject><subject>Coders</subject><subject>Complexity</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Swin transformer</subject><subject>Technical services</subject><subject>Transformers</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWGq_gHgIeN6aTPZP9liK2kqtYFvBU8juTspWN6nJFum3d2t76Gne8N6bgR8ht5wNOWf5w8vraLEYAgMxFEJAHssL0oMkSyPB0_jyTF-TQQgbxhiwWGYSeuRzsi98XdHxfE61rejSaxuM8w16Osf21_kv2q10gY22bV12Yt2gbXVbO0udoavRB33HxrXYWTbUdk2njV5juCFXRn8HHJxmn6yeHpfjSTR7e56OR7Oo5LnMoiJjhnFZZRALziuJxhQlZKzSgiGrCkiw4KUBAykIrpOYyxikzlnnFBlWok_uj3e33v3sMLRq43bedi8V5ILlKU8g6VJwTJXeheDRqK2vG-33ijN1oKj-KaoDRXWi2JXujqUaEc8KgudCSPEHsb1tDg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhou, Xuanyu</creator><creator>Zhou, Lifan</creator><creator>Gong, Shengrong</creator><creator>Zhang, Haizhen</creator><creator>Zhong, Shan</creator><creator>Xia, Yu</creator><creator>Huang, Yizhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0266-2422</orcidid><orcidid>https://orcid.org/0000-0003-0034-6952</orcidid><orcidid>https://orcid.org/0009-0002-0633-694X</orcidid><orcidid>https://orcid.org/0000-0001-7665-413X</orcidid></search><sort><creationdate>20240301</creationdate><title>Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images</title><author>Zhou, Xuanyu ; Zhou, Lifan ; Gong, Shengrong ; Zhang, Haizhen ; Zhong, Shan ; Xia, Yu ; Huang, Yizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1987-b70f018d724311d8effbc270da30e0db25eb1cf2f26231a5418428a90b25b7ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Autonomous aerial vehicles</topic><topic>Coders</topic><topic>Complexity</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Swin transformer</topic><topic>Technical services</topic><topic>Transformers</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xuanyu</creatorcontrib><creatorcontrib>Zhou, Lifan</creatorcontrib><creatorcontrib>Gong, Shengrong</creatorcontrib><creatorcontrib>Zhang, Haizhen</creatorcontrib><creatorcontrib>Zhong, Shan</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Huang, Yizhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xuanyu</au><au>Zhou, Lifan</au><au>Gong, Shengrong</au><au>Zhang, Haizhen</au><au>Zhong, Shan</au><au>Xia, Yu</au><au>Huang, Yizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>Semantic segmentation of unmanned aerial vehicle (UAV) remote sensing images is a recent research hotspot, offering technical support for diverse types of UAV remote sensing missions. However, unlike general scene images, UAV remote sensing images present inherent challenges. These challenges include the complexity of backgrounds, substantial variations in target scales, and dense arrangements of small targets, which severely hinder the accuracy of semantic segmentation. To address these issues, we propose a convolutional neural network (CNN) and transformer hybrid network for semantic segmentation of UAV remote sensing images. The proposed network follows an encoder-decoder architecture that merges a transformer-based encoder with a CNN-based decoder. First, we incorporate the Swin transformer as the encoder to address the limitations of CNN in global modeling, mitigating the interference caused by complex background information. Second, to effectively handle the significant changes in target scales, we design the multiscale feature integration module (MFIM) that enhances the multiscale feature representation capability of the network. Finally, the semantic feature fusion module (SFFM) is designed to filter the redundant noise during the feature fusion process, which improves the recognition of small targets and edges. Experimental results demonstrate that the proposed method outperforms other popular methods on the UAVid and Aeroscapes datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2023.3332948</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0266-2422</orcidid><orcidid>https://orcid.org/0000-0003-0034-6952</orcidid><orcidid>https://orcid.org/0009-0002-0633-694X</orcidid><orcidid>https://orcid.org/0000-0001-7665-413X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-3164 |
ispartof | IEEE journal on miniaturization for air and space systems, 2024-03, Vol.5 (1), p.33-41 |
issn | 2576-3164 2576-3164 |
language | eng |
recordid | cdi_ieee_primary_10319338 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Autonomous aerial vehicles Coders Complexity Convolutional neural networks Feature extraction Image segmentation Modules Remote sensing Semantic segmentation Semantics Swin transformer Technical services Transformers unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
title | Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20CNN%20and%20Transformer%20Network%20for%20Semantic%20Segmentation%20of%20UAV%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Zhou,%20Xuanyu&rft.date=2024-03-01&rft.volume=5&rft.issue=1&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2023.3332948&rft_dat=%3Cproquest_ieee_%3E2930961525%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1987-b70f018d724311d8effbc270da30e0db25eb1cf2f26231a5418428a90b25b7ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930961525&rft_id=info:pmid/&rft_ieee_id=10319338&rfr_iscdi=true |