Loading…

Fuzzy Logic Evaluation of Knee Flexion Angle During Gait

In this paper, we propose a method for quantitative gait analysis with videos. First, the joint position coordinates are estimated with the gait video. Next, by tracking the person and analyzing the knee joint, we obtain the time series data of the subject's knee flexion angle. Finally, based o...

Full description

Saved in:
Bibliographic Details
Main Authors: Hayashi, Kohei, Harada, Risa, Naomiyagi, Hata, Yutaka, Saji, Yoshiaki, Sakai, Yoshitada
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 375
container_issue
container_start_page 370
container_title
container_volume
creator Hayashi, Kohei
Harada, Risa
Naomiyagi
Hata, Yutaka
Saji, Yoshiaki
Sakai, Yoshitada
description In this paper, we propose a method for quantitative gait analysis with videos. First, the joint position coordinates are estimated with the gait video. Next, by tracking the person and analyzing the knee joint, we obtain the time series data of the subject's knee flexion angle. Finally, based on fuzzy logic, we evaluate how close the subject's gait was to a normal gait. As a result, the mean value of fuzzy degree is 0.70±0.031(range: 0.64-0.74) for healthy adults and 0.18±0.043(range: 0.11-0.22) for patients. This system enables quantitative evaluation of gait more easily than existing methods.
doi_str_mv 10.1109/ICMLC58545.2023.10327930
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10327930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10327930</ieee_id><sourcerecordid>10327930</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-6513326018dc7f352722e4afc968ee0a3af2338fde4262cf4d2228f6dfa89ab23</originalsourceid><addsrcrecordid>eNo1j81KxDAURqMgOIx9Axd5gdabe5M0WQ51Og5W3Oh6iG1SIrWV_ogzT6-ifpvD2Rz4GOMCMiHA3uyLh6pQRkmVISBlAghzS3DGEptbQwoIKDdwzlYoNKSCpLlkyTS9wvdyKY0VK2bK5XQ68mpoY823H65b3ByHng-B3_fe87Lznz--6dvO89tljH3Ldy7OV-wiuG7yyR_X7LncPhV3afW42xebKo1C2DnVShChBmGaOg-kMEf00oXaauM9OHIBiUxovESNdZANIpqgm-CMdS9Ia3b9243e-8P7GN_ceDz8n6Uv-c1H1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy Logic Evaluation of Knee Flexion Angle During Gait</title><source>IEEE Xplore All Conference Series</source><creator>Hayashi, Kohei ; Harada, Risa ; Naomiyagi ; Hata, Yutaka ; Saji, Yoshiaki ; Sakai, Yoshitada</creator><creatorcontrib>Hayashi, Kohei ; Harada, Risa ; Naomiyagi ; Hata, Yutaka ; Saji, Yoshiaki ; Sakai, Yoshitada</creatorcontrib><description>In this paper, we propose a method for quantitative gait analysis with videos. First, the joint position coordinates are estimated with the gait video. Next, by tracking the person and analyzing the knee joint, we obtain the time series data of the subject's knee flexion angle. Finally, based on fuzzy logic, we evaluate how close the subject's gait was to a normal gait. As a result, the mean value of fuzzy degree is 0.70±0.031(range: 0.64-0.74) for healthy adults and 0.18±0.043(range: 0.11-0.22) for patients. This system enables quantitative evaluation of gait more easily than existing methods.</description><identifier>EISSN: 2160-1348</identifier><identifier>EISBN: 9798350303780</identifier><identifier>DOI: 10.1109/ICMLC58545.2023.10327930</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Pose Estimation ; Fuzzy logic ; Gait Analysis ; Knee ; Knee Flexion Angle ; Medical services ; Performance evaluation ; Pose estimation ; Three-dimensional displays ; Time series analysis</subject><ispartof>2023 International Conference on Machine Learning and Cybernetics (ICMLC), 2023, p.370-375</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10327930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10327930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hayashi, Kohei</creatorcontrib><creatorcontrib>Harada, Risa</creatorcontrib><creatorcontrib>Naomiyagi</creatorcontrib><creatorcontrib>Hata, Yutaka</creatorcontrib><creatorcontrib>Saji, Yoshiaki</creatorcontrib><creatorcontrib>Sakai, Yoshitada</creatorcontrib><title>Fuzzy Logic Evaluation of Knee Flexion Angle During Gait</title><title>2023 International Conference on Machine Learning and Cybernetics (ICMLC)</title><addtitle>ICMLC</addtitle><description>In this paper, we propose a method for quantitative gait analysis with videos. First, the joint position coordinates are estimated with the gait video. Next, by tracking the person and analyzing the knee joint, we obtain the time series data of the subject's knee flexion angle. Finally, based on fuzzy logic, we evaluate how close the subject's gait was to a normal gait. As a result, the mean value of fuzzy degree is 0.70±0.031(range: 0.64-0.74) for healthy adults and 0.18±0.043(range: 0.11-0.22) for patients. This system enables quantitative evaluation of gait more easily than existing methods.</description><subject>3D Pose Estimation</subject><subject>Fuzzy logic</subject><subject>Gait Analysis</subject><subject>Knee</subject><subject>Knee Flexion Angle</subject><subject>Medical services</subject><subject>Performance evaluation</subject><subject>Pose estimation</subject><subject>Three-dimensional displays</subject><subject>Time series analysis</subject><issn>2160-1348</issn><isbn>9798350303780</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAURqMgOIx9Axd5gdabe5M0WQ51Og5W3Oh6iG1SIrWV_ogzT6-ifpvD2Rz4GOMCMiHA3uyLh6pQRkmVISBlAghzS3DGEptbQwoIKDdwzlYoNKSCpLlkyTS9wvdyKY0VK2bK5XQ68mpoY823H65b3ByHng-B3_fe87Lznz--6dvO89tljH3Ldy7OV-wiuG7yyR_X7LncPhV3afW42xebKo1C2DnVShChBmGaOg-kMEf00oXaauM9OHIBiUxovESNdZANIpqgm-CMdS9Ia3b9243e-8P7GN_ceDz8n6Uv-c1H1Q</recordid><startdate>20230709</startdate><enddate>20230709</enddate><creator>Hayashi, Kohei</creator><creator>Harada, Risa</creator><creator>Naomiyagi</creator><creator>Hata, Yutaka</creator><creator>Saji, Yoshiaki</creator><creator>Sakai, Yoshitada</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230709</creationdate><title>Fuzzy Logic Evaluation of Knee Flexion Angle During Gait</title><author>Hayashi, Kohei ; Harada, Risa ; Naomiyagi ; Hata, Yutaka ; Saji, Yoshiaki ; Sakai, Yoshitada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-6513326018dc7f352722e4afc968ee0a3af2338fde4262cf4d2228f6dfa89ab23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D Pose Estimation</topic><topic>Fuzzy logic</topic><topic>Gait Analysis</topic><topic>Knee</topic><topic>Knee Flexion Angle</topic><topic>Medical services</topic><topic>Performance evaluation</topic><topic>Pose estimation</topic><topic>Three-dimensional displays</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Kohei</creatorcontrib><creatorcontrib>Harada, Risa</creatorcontrib><creatorcontrib>Naomiyagi</creatorcontrib><creatorcontrib>Hata, Yutaka</creatorcontrib><creatorcontrib>Saji, Yoshiaki</creatorcontrib><creatorcontrib>Sakai, Yoshitada</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayashi, Kohei</au><au>Harada, Risa</au><au>Naomiyagi</au><au>Hata, Yutaka</au><au>Saji, Yoshiaki</au><au>Sakai, Yoshitada</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy Logic Evaluation of Knee Flexion Angle During Gait</atitle><btitle>2023 International Conference on Machine Learning and Cybernetics (ICMLC)</btitle><stitle>ICMLC</stitle><date>2023-07-09</date><risdate>2023</risdate><spage>370</spage><epage>375</epage><pages>370-375</pages><eissn>2160-1348</eissn><eisbn>9798350303780</eisbn><abstract>In this paper, we propose a method for quantitative gait analysis with videos. First, the joint position coordinates are estimated with the gait video. Next, by tracking the person and analyzing the knee joint, we obtain the time series data of the subject's knee flexion angle. Finally, based on fuzzy logic, we evaluate how close the subject's gait was to a normal gait. As a result, the mean value of fuzzy degree is 0.70±0.031(range: 0.64-0.74) for healthy adults and 0.18±0.043(range: 0.11-0.22) for patients. This system enables quantitative evaluation of gait more easily than existing methods.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC58545.2023.10327930</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-1348
ispartof 2023 International Conference on Machine Learning and Cybernetics (ICMLC), 2023, p.370-375
issn 2160-1348
language eng
recordid cdi_ieee_primary_10327930
source IEEE Xplore All Conference Series
subjects 3D Pose Estimation
Fuzzy logic
Gait Analysis
Knee
Knee Flexion Angle
Medical services
Performance evaluation
Pose estimation
Three-dimensional displays
Time series analysis
title Fuzzy Logic Evaluation of Knee Flexion Angle During Gait
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20Logic%20Evaluation%20of%20Knee%20Flexion%20Angle%20During%20Gait&rft.btitle=2023%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics%20(ICMLC)&rft.au=Hayashi,%20Kohei&rft.date=2023-07-09&rft.spage=370&rft.epage=375&rft.pages=370-375&rft.eissn=2160-1348&rft_id=info:doi/10.1109/ICMLC58545.2023.10327930&rft.eisbn=9798350303780&rft_dat=%3Cieee_CHZPO%3E10327930%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-6513326018dc7f352722e4afc968ee0a3af2338fde4262cf4d2228f6dfa89ab23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10327930&rfr_iscdi=true