Loading…
Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors
Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new...
Saved in:
Published in: | IEEE transactions on dependable and secure computing 2024-07, Vol.21 (4), p.3734-3750 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3750 |
container_issue | 4 |
container_start_page | 3734 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 21 |
creator | Cheng, Yushi Ji, Xiaoyu Zhu, Wenjun Zhang, Shibo Fu, Kevin Xu, Wenyuan |
description | Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of emerging image stabilizer hardware susceptible to acoustic manipulation and computer vision algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even when the camera is stable. These blurred images can induce object misclassification, affecting safety-critical decision-making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks: hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against five object detectors (YOLO V3/V4/V5, Faster R-CNN, and Apollo) and two lane detectors (UFLD and LaneAF). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware. |
doi_str_mv | 10.1109/TDSC.2023.3334618 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10330036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330036</ieee_id><sourcerecordid>3078106990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-be153d60c41194c95de6dcaeb94e8c8e7bb396973321ce52b2e40f41d891d7a93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl1Jrv52GOJWoWKh1avy2YzgS1tNu4mBf-9Ce3B0wzM884MD2P3CAtEkE_b5025SCDhC865yLC4YDOUAmMALC7HPhVpnMocr9lNCDuARBRSzNhqWR_JB-2t3kelO3RDTz76tsG6NjpaHS2NG0JvTfShW9sNe91PE9dEpT6Q19GG2uB8uGVXjd4HujvXOft6fdmWb_H6c_VeLtexSUTWxxVhyusMjMDxOyPTmrLaaKqkoMIUlFcVl5nMOU_QUJpUCQloBNaFxDrXks_Z42lv593PQKFXOzf4djypOOQFQiYljBSeKONdCJ4a1Xl70P5XIajJl5p8qcmXOvsaMw-njCWifzznADzjf3iUZok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078106990</pqid></control><display><type>article</type><title>Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors</title><source>IEEE Xplore (Online service)</source><creator>Cheng, Yushi ; Ji, Xiaoyu ; Zhu, Wenjun ; Zhang, Shibo ; Fu, Kevin ; Xu, Wenyuan</creator><creatorcontrib>Cheng, Yushi ; Ji, Xiaoyu ; Zhu, Wenjun ; Zhang, Shibo ; Fu, Kevin ; Xu, Wenyuan</creatorcontrib><description>Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of emerging image stabilizer hardware susceptible to acoustic manipulation and computer vision algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even when the camera is stable. These blurred images can induce object misclassification, affecting safety-critical decision-making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks: hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against five object detectors (YOLO V3/V4/V5, Faster R-CNN, and Apollo) and two lane detectors (UFLD and LaneAF). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2023.3334618</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Acoustics ; Adversarial machine learning ; Algorithms ; Automobiles ; Blurring ; Cameras ; Computer vision ; Detectors ; Hardware ; Image manipulation ; Image quality ; Image stabilizers ; Inertial sensing devices ; Inertial sensors ; intelligent vehicle security ; Machine learning ; Motion compensation ; Safety critical ; Sensor systems ; Sensors ; Vision systems</subject><ispartof>IEEE transactions on dependable and secure computing, 2024-07, Vol.21 (4), p.3734-3750</ispartof><rights>Copyright IEEE Computer Society 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0888-2322 ; 0000-0002-1101-0007 ; 0000-0002-5770-6421 ; 0009-0000-9595-9203 ; 0009-0009-1545-8106 ; 0000-0002-5043-9148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cheng, Yushi</creatorcontrib><creatorcontrib>Ji, Xiaoyu</creatorcontrib><creatorcontrib>Zhu, Wenjun</creatorcontrib><creatorcontrib>Zhang, Shibo</creatorcontrib><creatorcontrib>Fu, Kevin</creatorcontrib><creatorcontrib>Xu, Wenyuan</creatorcontrib><title>Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of emerging image stabilizer hardware susceptible to acoustic manipulation and computer vision algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even when the camera is stable. These blurred images can induce object misclassification, affecting safety-critical decision-making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks: hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against five object detectors (YOLO V3/V4/V5, Faster R-CNN, and Apollo) and two lane detectors (UFLD and LaneAF). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.</description><subject>Acoustics</subject><subject>Adversarial machine learning</subject><subject>Algorithms</subject><subject>Automobiles</subject><subject>Blurring</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Detectors</subject><subject>Hardware</subject><subject>Image manipulation</subject><subject>Image quality</subject><subject>Image stabilizers</subject><subject>Inertial sensing devices</subject><subject>Inertial sensors</subject><subject>intelligent vehicle security</subject><subject>Machine learning</subject><subject>Motion compensation</subject><subject>Safety critical</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Vision systems</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl1Jrv52GOJWoWKh1avy2YzgS1tNu4mBf-9Ce3B0wzM884MD2P3CAtEkE_b5025SCDhC865yLC4YDOUAmMALC7HPhVpnMocr9lNCDuARBRSzNhqWR_JB-2t3kelO3RDTz76tsG6NjpaHS2NG0JvTfShW9sNe91PE9dEpT6Q19GG2uB8uGVXjd4HujvXOft6fdmWb_H6c_VeLtexSUTWxxVhyusMjMDxOyPTmrLaaKqkoMIUlFcVl5nMOU_QUJpUCQloBNaFxDrXks_Z42lv593PQKFXOzf4djypOOQFQiYljBSeKONdCJ4a1Xl70P5XIajJl5p8qcmXOvsaMw-njCWifzznADzjf3iUZok</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Cheng, Yushi</creator><creator>Ji, Xiaoyu</creator><creator>Zhu, Wenjun</creator><creator>Zhang, Shibo</creator><creator>Fu, Kevin</creator><creator>Xu, Wenyuan</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0888-2322</orcidid><orcidid>https://orcid.org/0000-0002-1101-0007</orcidid><orcidid>https://orcid.org/0000-0002-5770-6421</orcidid><orcidid>https://orcid.org/0009-0000-9595-9203</orcidid><orcidid>https://orcid.org/0009-0009-1545-8106</orcidid><orcidid>https://orcid.org/0000-0002-5043-9148</orcidid></search><sort><creationdate>20240701</creationdate><title>Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors</title><author>Cheng, Yushi ; Ji, Xiaoyu ; Zhu, Wenjun ; Zhang, Shibo ; Fu, Kevin ; Xu, Wenyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-be153d60c41194c95de6dcaeb94e8c8e7bb396973321ce52b2e40f41d891d7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Adversarial machine learning</topic><topic>Algorithms</topic><topic>Automobiles</topic><topic>Blurring</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Detectors</topic><topic>Hardware</topic><topic>Image manipulation</topic><topic>Image quality</topic><topic>Image stabilizers</topic><topic>Inertial sensing devices</topic><topic>Inertial sensors</topic><topic>intelligent vehicle security</topic><topic>Machine learning</topic><topic>Motion compensation</topic><topic>Safety critical</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yushi</creatorcontrib><creatorcontrib>Ji, Xiaoyu</creatorcontrib><creatorcontrib>Zhu, Wenjun</creatorcontrib><creatorcontrib>Zhang, Shibo</creatorcontrib><creatorcontrib>Fu, Kevin</creatorcontrib><creatorcontrib>Xu, Wenyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yushi</au><au>Ji, Xiaoyu</au><au>Zhu, Wenjun</au><au>Zhang, Shibo</au><au>Fu, Kevin</au><au>Xu, Wenyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>3734</spage><epage>3750</epage><pages>3734-3750</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Autonomous vehicles increasingly rely on camera-based computer vision systems to perceive environments and make critical driving decisions. To improve image quality, image stabilizers with inertial sensors are added to reduce image blurring caused by camera jitters. However, this trend creates a new attack surface. This paper identifies a system-level vulnerability resulting from the combination of emerging image stabilizer hardware susceptible to acoustic manipulation and computer vision algorithms subject to adversarial examples. By emitting deliberately designed acoustic signals, an adversary can control the output of an inertial sensor, which triggers unnecessary motion compensation and results in a blurred image, even when the camera is stable. These blurred images can induce object misclassification, affecting safety-critical decision-making. We model the feasibility of such acoustic manipulation and design an attack framework that can accomplish three types of attacks: hiding, creating, and altering objects. Evaluation results demonstrate the effectiveness of our attacks against five object detectors (YOLO V3/V4/V5, Faster R-CNN, and Apollo) and two lane detectors (UFLD and LaneAF). We further introduce the concept of AMpLe attacks, a new class of system-level security vulnerabilities resulting from a combination of adversarial machine learning and physics-based injection of information-carrying signals into hardware.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2023.3334618</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0888-2322</orcidid><orcidid>https://orcid.org/0000-0002-1101-0007</orcidid><orcidid>https://orcid.org/0000-0002-5770-6421</orcidid><orcidid>https://orcid.org/0009-0000-9595-9203</orcidid><orcidid>https://orcid.org/0009-0009-1545-8106</orcidid><orcidid>https://orcid.org/0000-0002-5043-9148</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2024-07, Vol.21 (4), p.3734-3750 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_ieee_primary_10330036 |
source | IEEE Xplore (Online service) |
subjects | Acoustics Adversarial machine learning Algorithms Automobiles Blurring Cameras Computer vision Detectors Hardware Image manipulation Image quality Image stabilizers Inertial sensing devices Inertial sensors intelligent vehicle security Machine learning Motion compensation Safety critical Sensor systems Sensors Vision systems |
title | Adversarial Computer Vision via Acoustic Manipulation of Camera Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Computer%20Vision%20via%20Acoustic%20Manipulation%20of%20Camera%20Sensors&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Cheng,%20Yushi&rft.date=2024-07-01&rft.volume=21&rft.issue=4&rft.spage=3734&rft.epage=3750&rft.pages=3734-3750&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2023.3334618&rft_dat=%3Cproquest_ieee_%3E3078106990%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-be153d60c41194c95de6dcaeb94e8c8e7bb396973321ce52b2e40f41d891d7a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078106990&rft_id=info:pmid/&rft_ieee_id=10330036&rfr_iscdi=true |