Loading…
Deep Learning Inversion for Multivariate Magnetic Data
Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. La...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3 |
container_end_page | 10 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Shi, Xiaoqing Jia, Zhuo Geng, Hua Liu, Shuang Li, Yinshuo |
description | Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion. |
doi_str_mv | 10.1109/TGRS.2023.3337413 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10332234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10332234</ieee_id><sourcerecordid>2901226287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</originalsourceid><addsrcrecordid>eNpNkMFKAzEURYMoWKsfILgYcD017yWTZJbSai20CFrXIZm-KSl1pibTgn_vlHbh6m7OvRcOY_fARwC8fFpOPz5HyFGMhBBagrhgAygKk3Ml5SUbcChVjqbEa3aT0oZzkAXoAVMTol02Jxeb0KyzWXOgmELbZHUbs8V-24WDi8F1lC3cuqEuVNnEde6WXdVum-junEP29fqyHL_l8_fpbPw8zyssZZevED2qwpjS1egVGPLOeEeVAAUgTaUroZzUWnjNC46gtMbCCykQwK-8GLLH0-4utj97Sp3dtPvY9JcWSw6ICo3uKThRVWxTilTbXQzfLv5a4Paoxx712KMee9bTdx5OnUBE_3ghEPv_P5xwXuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901226287</pqid></control><display><type>article</type><title>Deep Learning Inversion for Multivariate Magnetic Data</title><source>IEEE Xplore (Online service)</source><creator>Shi, Xiaoqing ; Jia, Zhuo ; Geng, Hua ; Liu, Shuang ; Li, Yinshuo</creator><creatorcontrib>Shi, Xiaoqing ; Jia, Zhuo ; Geng, Hua ; Liu, Shuang ; Li, Yinshuo</creatorcontrib><description>Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3337413</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D convolution ; 3-D magnetic inversion ; Accuracy ; Convolution ; Data models ; Deep learning ; Feature extraction ; Information processing ; Inverse problems ; Inversion ; Machine learning ; Magnetic anomalies ; Magnetic data ; Magnetic domains ; Mathematical models ; Multivariate analysis ; multivariate data ; Neural networks ; Solid modeling ; Spatial data ; Tensors ; Three dimensional models ; Three-dimensional displays ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</citedby><cites>FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</cites><orcidid>0000-0001-8072-6642 ; 0009-0000-9707-8688 ; 0000-0001-9184-0782 ; 0000-0002-8336-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10332234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Shi, Xiaoqing</creatorcontrib><creatorcontrib>Jia, Zhuo</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Li, Yinshuo</creatorcontrib><title>Deep Learning Inversion for Multivariate Magnetic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.</description><subject>3-D convolution</subject><subject>3-D magnetic inversion</subject><subject>Accuracy</subject><subject>Convolution</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Information processing</subject><subject>Inverse problems</subject><subject>Inversion</subject><subject>Machine learning</subject><subject>Magnetic anomalies</subject><subject>Magnetic data</subject><subject>Magnetic domains</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>multivariate data</subject><subject>Neural networks</subject><subject>Solid modeling</subject><subject>Spatial data</subject><subject>Tensors</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEURYMoWKsfILgYcD017yWTZJbSai20CFrXIZm-KSl1pibTgn_vlHbh6m7OvRcOY_fARwC8fFpOPz5HyFGMhBBagrhgAygKk3Ml5SUbcChVjqbEa3aT0oZzkAXoAVMTol02Jxeb0KyzWXOgmELbZHUbs8V-24WDi8F1lC3cuqEuVNnEde6WXdVum-junEP29fqyHL_l8_fpbPw8zyssZZevED2qwpjS1egVGPLOeEeVAAUgTaUroZzUWnjNC46gtMbCCykQwK-8GLLH0-4utj97Sp3dtPvY9JcWSw6ICo3uKThRVWxTilTbXQzfLv5a4Paoxx712KMee9bTdx5OnUBE_3ghEPv_P5xwXuA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shi, Xiaoqing</creator><creator>Jia, Zhuo</creator><creator>Geng, Hua</creator><creator>Liu, Shuang</creator><creator>Li, Yinshuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8072-6642</orcidid><orcidid>https://orcid.org/0009-0000-9707-8688</orcidid><orcidid>https://orcid.org/0000-0001-9184-0782</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning Inversion for Multivariate Magnetic Data</title><author>Shi, Xiaoqing ; Jia, Zhuo ; Geng, Hua ; Liu, Shuang ; Li, Yinshuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D convolution</topic><topic>3-D magnetic inversion</topic><topic>Accuracy</topic><topic>Convolution</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Information processing</topic><topic>Inverse problems</topic><topic>Inversion</topic><topic>Machine learning</topic><topic>Magnetic anomalies</topic><topic>Magnetic data</topic><topic>Magnetic domains</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>multivariate data</topic><topic>Neural networks</topic><topic>Solid modeling</topic><topic>Spatial data</topic><topic>Tensors</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiaoqing</creatorcontrib><creatorcontrib>Jia, Zhuo</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Li, Yinshuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiaoqing</au><au>Jia, Zhuo</au><au>Geng, Hua</au><au>Liu, Shuang</au><au>Li, Yinshuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Inversion for Multivariate Magnetic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3337413</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8072-6642</orcidid><orcidid>https://orcid.org/0009-0000-9707-8688</orcidid><orcidid>https://orcid.org/0000-0001-9184-0782</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10332234 |
source | IEEE Xplore (Online service) |
subjects | 3-D convolution 3-D magnetic inversion Accuracy Convolution Data models Deep learning Feature extraction Information processing Inverse problems Inversion Machine learning Magnetic anomalies Magnetic data Magnetic domains Mathematical models Multivariate analysis multivariate data Neural networks Solid modeling Spatial data Tensors Three dimensional models Three-dimensional displays Training |
title | Deep Learning Inversion for Multivariate Magnetic Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Inversion%20for%20Multivariate%20Magnetic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shi,%20Xiaoqing&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3337413&rft_dat=%3Cproquest_ieee_%3E2901226287%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901226287&rft_id=info:pmid/&rft_ieee_id=10332234&rfr_iscdi=true |