Loading…

Deep Learning Inversion for Multivariate Magnetic Data

Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. La...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-10
Main Authors: Shi, Xiaoqing, Jia, Zhuo, Geng, Hua, Liu, Shuang, Li, Yinshuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3
cites cdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Shi, Xiaoqing
Jia, Zhuo
Geng, Hua
Liu, Shuang
Li, Yinshuo
description Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.
doi_str_mv 10.1109/TGRS.2023.3337413
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10332234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10332234</ieee_id><sourcerecordid>2901226287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</originalsourceid><addsrcrecordid>eNpNkMFKAzEURYMoWKsfILgYcD017yWTZJbSai20CFrXIZm-KSl1pibTgn_vlHbh6m7OvRcOY_fARwC8fFpOPz5HyFGMhBBagrhgAygKk3Ml5SUbcChVjqbEa3aT0oZzkAXoAVMTol02Jxeb0KyzWXOgmELbZHUbs8V-24WDi8F1lC3cuqEuVNnEde6WXdVum-junEP29fqyHL_l8_fpbPw8zyssZZevED2qwpjS1egVGPLOeEeVAAUgTaUroZzUWnjNC46gtMbCCykQwK-8GLLH0-4utj97Sp3dtPvY9JcWSw6ICo3uKThRVWxTilTbXQzfLv5a4Paoxx712KMee9bTdx5OnUBE_3ghEPv_P5xwXuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901226287</pqid></control><display><type>article</type><title>Deep Learning Inversion for Multivariate Magnetic Data</title><source>IEEE Xplore (Online service)</source><creator>Shi, Xiaoqing ; Jia, Zhuo ; Geng, Hua ; Liu, Shuang ; Li, Yinshuo</creator><creatorcontrib>Shi, Xiaoqing ; Jia, Zhuo ; Geng, Hua ; Liu, Shuang ; Li, Yinshuo</creatorcontrib><description>Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3337413</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D convolution ; 3-D magnetic inversion ; Accuracy ; Convolution ; Data models ; Deep learning ; Feature extraction ; Information processing ; Inverse problems ; Inversion ; Machine learning ; Magnetic anomalies ; Magnetic data ; Magnetic domains ; Mathematical models ; Multivariate analysis ; multivariate data ; Neural networks ; Solid modeling ; Spatial data ; Tensors ; Three dimensional models ; Three-dimensional displays ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</citedby><cites>FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</cites><orcidid>0000-0001-8072-6642 ; 0009-0000-9707-8688 ; 0000-0001-9184-0782 ; 0000-0002-8336-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10332234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Shi, Xiaoqing</creatorcontrib><creatorcontrib>Jia, Zhuo</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Li, Yinshuo</creatorcontrib><title>Deep Learning Inversion for Multivariate Magnetic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.</description><subject>3-D convolution</subject><subject>3-D magnetic inversion</subject><subject>Accuracy</subject><subject>Convolution</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Information processing</subject><subject>Inverse problems</subject><subject>Inversion</subject><subject>Machine learning</subject><subject>Magnetic anomalies</subject><subject>Magnetic data</subject><subject>Magnetic domains</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>multivariate data</subject><subject>Neural networks</subject><subject>Solid modeling</subject><subject>Spatial data</subject><subject>Tensors</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEURYMoWKsfILgYcD017yWTZJbSai20CFrXIZm-KSl1pibTgn_vlHbh6m7OvRcOY_fARwC8fFpOPz5HyFGMhBBagrhgAygKk3Ml5SUbcChVjqbEa3aT0oZzkAXoAVMTol02Jxeb0KyzWXOgmELbZHUbs8V-24WDi8F1lC3cuqEuVNnEde6WXdVum-junEP29fqyHL_l8_fpbPw8zyssZZevED2qwpjS1egVGPLOeEeVAAUgTaUroZzUWnjNC46gtMbCCykQwK-8GLLH0-4utj97Sp3dtPvY9JcWSw6ICo3uKThRVWxTilTbXQzfLv5a4Paoxx712KMee9bTdx5OnUBE_3ghEPv_P5xwXuA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shi, Xiaoqing</creator><creator>Jia, Zhuo</creator><creator>Geng, Hua</creator><creator>Liu, Shuang</creator><creator>Li, Yinshuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8072-6642</orcidid><orcidid>https://orcid.org/0009-0000-9707-8688</orcidid><orcidid>https://orcid.org/0000-0001-9184-0782</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning Inversion for Multivariate Magnetic Data</title><author>Shi, Xiaoqing ; Jia, Zhuo ; Geng, Hua ; Liu, Shuang ; Li, Yinshuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D convolution</topic><topic>3-D magnetic inversion</topic><topic>Accuracy</topic><topic>Convolution</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Information processing</topic><topic>Inverse problems</topic><topic>Inversion</topic><topic>Machine learning</topic><topic>Magnetic anomalies</topic><topic>Magnetic data</topic><topic>Magnetic domains</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>multivariate data</topic><topic>Neural networks</topic><topic>Solid modeling</topic><topic>Spatial data</topic><topic>Tensors</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiaoqing</creatorcontrib><creatorcontrib>Jia, Zhuo</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Li, Yinshuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiaoqing</au><au>Jia, Zhuo</au><au>Geng, Hua</au><au>Liu, Shuang</au><au>Li, Yinshuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Inversion for Multivariate Magnetic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Three-dimensional inversion of magnetic data can obtain the distribution of subsurface magnetic targets. Deep learning is an effective way to achieve 3-D inversion, which trains a neural network to learn the features of magnetic anomaly data and then generates a 3-D model based on these features. Large training samples are required to achieve persuasive results due to the limited observational data and the multisolution nature of the inverse problem. To reduce the nonuniqueness of the inversion, this article proposes a multivariate magnetic data-based deep learning 3-D inversion strategy. With the proposed strategy, more domain knowledge is incorporated into the training data of the neural network to improve the inversion accuracy. The input data of the neural network adopt multivariate observation data, including multiscale data and multitype data such as magnetic three-component data, magnetic gradient tensor data, and so on, and output a 3-D model to realize 3-D to 3-D mapping. Then, the neural network structure uses the 3-D convolution to extract 3-D spatial information. Both tests on simulation and measured data verify that the proposed strategy can effectively improve the accuracy of the 3-D magnetic inversion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3337413</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8072-6642</orcidid><orcidid>https://orcid.org/0009-0000-9707-8688</orcidid><orcidid>https://orcid.org/0000-0001-9184-0782</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10332234
source IEEE Xplore (Online service)
subjects 3-D convolution
3-D magnetic inversion
Accuracy
Convolution
Data models
Deep learning
Feature extraction
Information processing
Inverse problems
Inversion
Machine learning
Magnetic anomalies
Magnetic data
Magnetic domains
Mathematical models
Multivariate analysis
multivariate data
Neural networks
Solid modeling
Spatial data
Tensors
Three dimensional models
Three-dimensional displays
Training
title Deep Learning Inversion for Multivariate Magnetic Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Inversion%20for%20Multivariate%20Magnetic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shi,%20Xiaoqing&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3337413&rft_dat=%3Cproquest_ieee_%3E2901226287%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-d22b265889af2b618eba8baec3161148c7c36a4773b70502167725b343211bdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901226287&rft_id=info:pmid/&rft_ieee_id=10332234&rfr_iscdi=true