Loading…

Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments

It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flig...

Full description

Saved in:
Bibliographic Details
Main Authors: Parralejo, Felipe, Paredes, Jose A., Aranda, Fernando J., Alvarez, Fernando J., Moreno, Jose A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Parralejo, Felipe
Paredes, Jose A.
Aranda, Fernando J.
Alvarez, Fernando J.
Moreno, Jose A.
description It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.
doi_str_mv 10.1109/IPIN57070.2023.10332501
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10332501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10332501</ieee_id><sourcerecordid>10332501</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-8196d4e3f9c46f740b3e487972e2e06fff4780c1450e843ae0cab5ebb3c1944c3</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhqMgOGb_gWD-QOc5Sdo0lzI3V5gf6Py4G2l7opE2laYO9u8dqFfvAw88Fy9jFwgzRDCX5UN5l2nQMBMg5AxBSpEBHrHEaFPIDKQARHXMJkJpTA3qt1OWxPgJAJgj5lBM2Mutb1vf0TgQf7U74o-2sQN_2seROu76A1pHfNn694-R945fD32gyH3gq-_OhnQz2BD9SA1fhJ0_yI7CGM_YibNtpORvp-x5udjMV-n6_qacX61Tj2jGtECTN4qkM7XKnVZQSVKFNlqQIMidc0oXUKPKgAolLUFtq4yqStZolKrllJ3_dj0Rbb8G39lhv_2_Qv4AqkZTIg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</title><source>IEEE Xplore All Conference Series</source><creator>Parralejo, Felipe ; Paredes, Jose A. ; Aranda, Fernando J. ; Alvarez, Fernando J. ; Moreno, Jose A.</creator><creatorcontrib>Parralejo, Felipe ; Paredes, Jose A. ; Aranda, Fernando J. ; Alvarez, Fernando J. ; Moreno, Jose A.</creatorcontrib><description>It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.</description><identifier>EISSN: 2471-917X</identifier><identifier>EISBN: 9798350320114</identifier><identifier>DOI: 10.1109/IPIN57070.2023.10332501</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne radar ; collision avoidance ; drone ; Machine learning ; mmWave radar ; Radar detection ; Radar tracking ; safe flight ; Safety ; Spaceborne radar ; Velocity measurement</subject><ispartof>2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10332501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10332501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parralejo, Felipe</creatorcontrib><creatorcontrib>Paredes, Jose A.</creatorcontrib><creatorcontrib>Aranda, Fernando J.</creatorcontrib><creatorcontrib>Alvarez, Fernando J.</creatorcontrib><creatorcontrib>Moreno, Jose A.</creatorcontrib><title>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</title><title>2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)</title><addtitle>IPIN</addtitle><description>It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.</description><subject>Airborne radar</subject><subject>collision avoidance</subject><subject>drone</subject><subject>Machine learning</subject><subject>mmWave radar</subject><subject>Radar detection</subject><subject>Radar tracking</subject><subject>safe flight</subject><subject>Safety</subject><subject>Spaceborne radar</subject><subject>Velocity measurement</subject><issn>2471-917X</issn><isbn>9798350320114</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kF1LwzAUhqMgOGb_gWD-QOc5Sdo0lzI3V5gf6Py4G2l7opE2laYO9u8dqFfvAw88Fy9jFwgzRDCX5UN5l2nQMBMg5AxBSpEBHrHEaFPIDKQARHXMJkJpTA3qt1OWxPgJAJgj5lBM2Mutb1vf0TgQf7U74o-2sQN_2seROu76A1pHfNn694-R945fD32gyH3gq-_OhnQz2BD9SA1fhJ0_yI7CGM_YibNtpORvp-x5udjMV-n6_qacX61Tj2jGtECTN4qkM7XKnVZQSVKFNlqQIMidc0oXUKPKgAolLUFtq4yqStZolKrllJ3_dj0Rbb8G39lhv_2_Qv4AqkZTIg</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Parralejo, Felipe</creator><creator>Paredes, Jose A.</creator><creator>Aranda, Fernando J.</creator><creator>Alvarez, Fernando J.</creator><creator>Moreno, Jose A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230925</creationdate><title>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</title><author>Parralejo, Felipe ; Paredes, Jose A. ; Aranda, Fernando J. ; Alvarez, Fernando J. ; Moreno, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-8196d4e3f9c46f740b3e487972e2e06fff4780c1450e843ae0cab5ebb3c1944c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne radar</topic><topic>collision avoidance</topic><topic>drone</topic><topic>Machine learning</topic><topic>mmWave radar</topic><topic>Radar detection</topic><topic>Radar tracking</topic><topic>safe flight</topic><topic>Safety</topic><topic>Spaceborne radar</topic><topic>Velocity measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Parralejo, Felipe</creatorcontrib><creatorcontrib>Paredes, Jose A.</creatorcontrib><creatorcontrib>Aranda, Fernando J.</creatorcontrib><creatorcontrib>Alvarez, Fernando J.</creatorcontrib><creatorcontrib>Moreno, Jose A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parralejo, Felipe</au><au>Paredes, Jose A.</au><au>Aranda, Fernando J.</au><au>Alvarez, Fernando J.</au><au>Moreno, Jose A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</atitle><btitle>2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)</btitle><stitle>IPIN</stitle><date>2023-09-25</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2471-917X</eissn><eisbn>9798350320114</eisbn><abstract>It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.</abstract><pub>IEEE</pub><doi>10.1109/IPIN57070.2023.10332501</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2471-917X
ispartof 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2023, p.1-6
issn 2471-917X
language eng
recordid cdi_ieee_primary_10332501
source IEEE Xplore All Conference Series
subjects Airborne radar
collision avoidance
drone
Machine learning
mmWave radar
Radar detection
Radar tracking
safe flight
Safety
Spaceborne radar
Velocity measurement
title Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Millimetre%20Wave%20Radar%20System%20for%20Safe%20Flight%20of%20Drones%20in%20Human-Transited%20Environments&rft.btitle=2023%2013th%20International%20Conference%20on%20Indoor%20Positioning%20and%20Indoor%20Navigation%20(IPIN)&rft.au=Parralejo,%20Felipe&rft.date=2023-09-25&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2471-917X&rft_id=info:doi/10.1109/IPIN57070.2023.10332501&rft.eisbn=9798350320114&rft_dat=%3Cieee_CHZPO%3E10332501%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-8196d4e3f9c46f740b3e487972e2e06fff4780c1450e843ae0cab5ebb3c1944c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10332501&rfr_iscdi=true