Loading…
Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments
It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flig...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Parralejo, Felipe Paredes, Jose A. Aranda, Fernando J. Alvarez, Fernando J. Moreno, Jose A. |
description | It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video. |
doi_str_mv | 10.1109/IPIN57070.2023.10332501 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10332501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10332501</ieee_id><sourcerecordid>10332501</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-8196d4e3f9c46f740b3e487972e2e06fff4780c1450e843ae0cab5ebb3c1944c3</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhqMgOGb_gWD-QOc5Sdo0lzI3V5gf6Py4G2l7opE2laYO9u8dqFfvAw88Fy9jFwgzRDCX5UN5l2nQMBMg5AxBSpEBHrHEaFPIDKQARHXMJkJpTA3qt1OWxPgJAJgj5lBM2Mutb1vf0TgQf7U74o-2sQN_2seROu76A1pHfNn694-R945fD32gyH3gq-_OhnQz2BD9SA1fhJ0_yI7CGM_YibNtpORvp-x5udjMV-n6_qacX61Tj2jGtECTN4qkM7XKnVZQSVKFNlqQIMidc0oXUKPKgAolLUFtq4yqStZolKrllJ3_dj0Rbb8G39lhv_2_Qv4AqkZTIg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</title><source>IEEE Xplore All Conference Series</source><creator>Parralejo, Felipe ; Paredes, Jose A. ; Aranda, Fernando J. ; Alvarez, Fernando J. ; Moreno, Jose A.</creator><creatorcontrib>Parralejo, Felipe ; Paredes, Jose A. ; Aranda, Fernando J. ; Alvarez, Fernando J. ; Moreno, Jose A.</creatorcontrib><description>It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.</description><identifier>EISSN: 2471-917X</identifier><identifier>EISBN: 9798350320114</identifier><identifier>DOI: 10.1109/IPIN57070.2023.10332501</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airborne radar ; collision avoidance ; drone ; Machine learning ; mmWave radar ; Radar detection ; Radar tracking ; safe flight ; Safety ; Spaceborne radar ; Velocity measurement</subject><ispartof>2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10332501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10332501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parralejo, Felipe</creatorcontrib><creatorcontrib>Paredes, Jose A.</creatorcontrib><creatorcontrib>Aranda, Fernando J.</creatorcontrib><creatorcontrib>Alvarez, Fernando J.</creatorcontrib><creatorcontrib>Moreno, Jose A.</creatorcontrib><title>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</title><title>2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)</title><addtitle>IPIN</addtitle><description>It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.</description><subject>Airborne radar</subject><subject>collision avoidance</subject><subject>drone</subject><subject>Machine learning</subject><subject>mmWave radar</subject><subject>Radar detection</subject><subject>Radar tracking</subject><subject>safe flight</subject><subject>Safety</subject><subject>Spaceborne radar</subject><subject>Velocity measurement</subject><issn>2471-917X</issn><isbn>9798350320114</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kF1LwzAUhqMgOGb_gWD-QOc5Sdo0lzI3V5gf6Py4G2l7opE2laYO9u8dqFfvAw88Fy9jFwgzRDCX5UN5l2nQMBMg5AxBSpEBHrHEaFPIDKQARHXMJkJpTA3qt1OWxPgJAJgj5lBM2Mutb1vf0TgQf7U74o-2sQN_2seROu76A1pHfNn694-R945fD32gyH3gq-_OhnQz2BD9SA1fhJ0_yI7CGM_YibNtpORvp-x5udjMV-n6_qacX61Tj2jGtECTN4qkM7XKnVZQSVKFNlqQIMidc0oXUKPKgAolLUFtq4yqStZolKrllJ3_dj0Rbb8G39lhv_2_Qv4AqkZTIg</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Parralejo, Felipe</creator><creator>Paredes, Jose A.</creator><creator>Aranda, Fernando J.</creator><creator>Alvarez, Fernando J.</creator><creator>Moreno, Jose A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230925</creationdate><title>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</title><author>Parralejo, Felipe ; Paredes, Jose A. ; Aranda, Fernando J. ; Alvarez, Fernando J. ; Moreno, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-8196d4e3f9c46f740b3e487972e2e06fff4780c1450e843ae0cab5ebb3c1944c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne radar</topic><topic>collision avoidance</topic><topic>drone</topic><topic>Machine learning</topic><topic>mmWave radar</topic><topic>Radar detection</topic><topic>Radar tracking</topic><topic>safe flight</topic><topic>Safety</topic><topic>Spaceborne radar</topic><topic>Velocity measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Parralejo, Felipe</creatorcontrib><creatorcontrib>Paredes, Jose A.</creatorcontrib><creatorcontrib>Aranda, Fernando J.</creatorcontrib><creatorcontrib>Alvarez, Fernando J.</creatorcontrib><creatorcontrib>Moreno, Jose A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parralejo, Felipe</au><au>Paredes, Jose A.</au><au>Aranda, Fernando J.</au><au>Alvarez, Fernando J.</au><au>Moreno, Jose A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments</atitle><btitle>2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)</btitle><stitle>IPIN</stitle><date>2023-09-25</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2471-917X</eissn><eisbn>9798350320114</eisbn><abstract>It is undeniable that more and more tasks in which drones work autonomously are becoming essential. Of particular importance are indoor human-transited environments. These entail a challenge for drone flights as the safety of people must be ensured at all times while they are in the vicinity of flights. Millimetre-wave radar has proven to be a technology that provides accurate position and velocity measurements, making it ideal for monitoring spaces in search of moving targets. Thus, this work proposes a security system based on millimetre-wave radar, using a processing workflow based on machine learning techniques to detect humans and interrupt drone flights until people are in a safe place. The feasibility of the system is demonstrated experimentally, with accuracy, precision, recall and F1 score greater than 99% and a real-time system performance video.</abstract><pub>IEEE</pub><doi>10.1109/IPIN57070.2023.10332501</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2471-917X |
ispartof | 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2023, p.1-6 |
issn | 2471-917X |
language | eng |
recordid | cdi_ieee_primary_10332501 |
source | IEEE Xplore All Conference Series |
subjects | Airborne radar collision avoidance drone Machine learning mmWave radar Radar detection Radar tracking safe flight Safety Spaceborne radar Velocity measurement |
title | Millimetre Wave Radar System for Safe Flight of Drones in Human-Transited Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Millimetre%20Wave%20Radar%20System%20for%20Safe%20Flight%20of%20Drones%20in%20Human-Transited%20Environments&rft.btitle=2023%2013th%20International%20Conference%20on%20Indoor%20Positioning%20and%20Indoor%20Navigation%20(IPIN)&rft.au=Parralejo,%20Felipe&rft.date=2023-09-25&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2471-917X&rft_id=info:doi/10.1109/IPIN57070.2023.10332501&rft.eisbn=9798350320114&rft_dat=%3Cieee_CHZPO%3E10332501%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-8196d4e3f9c46f740b3e487972e2e06fff4780c1450e843ae0cab5ebb3c1944c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10332501&rfr_iscdi=true |