Loading…
Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry?
This work introduces a novel approach to improve robot perception in dynamic environments using Semantic Filtering. The goal is to enhance Visual Simultaneous Localization and Mapping (V-SLAM) and Visual Odometry (VO) tasks by excluding feature points associated with moving objects. Four different a...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 572 |
container_issue | |
container_start_page | 567 |
container_title | |
container_volume | |
creator | Costa, Leonardo Rezende Colombini, Esther Luna |
description | This work introduces a novel approach to improve robot perception in dynamic environments using Semantic Filtering. The goal is to enhance Visual Simultaneous Localization and Mapping (V-SLAM) and Visual Odometry (VO) tasks by excluding feature points associated with moving objects. Four different approaches for semantic extraction, namely YOLOv3, DeepLabv3 with two different backbones, and Mask R-CNN, were evaluated. The framework was tested on various datasets, including KITTI, TUM and a simulated sequence generated on AirSim. The results demonstrated that the proposed semantic filtering significantly reduced estimation errors in VO tasks, with average error reduction ranging from 2.81% to 15.98%, while the results for V-SLAM were similar to the base work, especially for sequences with detected loops. Although fewer keypoints are used, the estimations benefit from the points excluded in VO. More experiments are needed to address the effects in VSLAM due to the presence of loop closure and the nature of the datasets. |
doi_str_mv | 10.1109/LARS/SBR/WRE59448.2023.10332956 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10332956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10332956</ieee_id><sourcerecordid>10332956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-b5fbf053b80267dc8c939799fbba560f7a6a81d909a246af3e2ca63135b866433</originalsourceid><addsrcrecordid>eNo1kE1LAzEURaMgWGr_gYvsXE37kjfJJCuptVVhpNDxo7vyMpNISmdaZkah_96CdnU5m8u5l7E7AWMhwE7y6aqYFA-ryedqrmyamrEEiWMBiNIqfcFGNrMGFaBQaLJLNpA6xUQbtb5mo67bAgBKSAGyAVvPqOGFr6npY5k46nzFF3HX-zY2X3wf-OOxoTqWfOm2vuw7HutDu__x_CN237TjRT595dRUZ15W-9r37fH-hl0F2nV-9J9D9r6Yv82ek3z59DKb5kk8KfSJU8EFUOgMSJ1VpSktnvRtcI6UhpCRJiMqC5ZkqimglyVpFKic0adZOGS3f73Re785tLGm9rg5n4G_93BViA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry?</title><source>IEEE Xplore All Conference Series</source><creator>Costa, Leonardo Rezende ; Colombini, Esther Luna</creator><creatorcontrib>Costa, Leonardo Rezende ; Colombini, Esther Luna</creatorcontrib><description>This work introduces a novel approach to improve robot perception in dynamic environments using Semantic Filtering. The goal is to enhance Visual Simultaneous Localization and Mapping (V-SLAM) and Visual Odometry (VO) tasks by excluding feature points associated with moving objects. Four different approaches for semantic extraction, namely YOLOv3, DeepLabv3 with two different backbones, and Mask R-CNN, were evaluated. The framework was tested on various datasets, including KITTI, TUM and a simulated sequence generated on AirSim. The results demonstrated that the proposed semantic filtering significantly reduced estimation errors in VO tasks, with average error reduction ranging from 2.81% to 15.98%, while the results for V-SLAM were similar to the base work, especially for sequences with detected loops. Although fewer keypoints are used, the estimations benefit from the points excluded in VO. More experiments are needed to address the effects in VSLAM due to the presence of loop closure and the nature of the datasets.</description><identifier>EISSN: 2643-685X</identifier><identifier>EISBN: 9798350315387</identifier><identifier>DOI: 10.1109/LARS/SBR/WRE59448.2023.10332956</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Filtering ; Semantic ; Semantics ; Simultaneous localization and mapping ; Trajectory ; V-SLAM ; Vehicle dynamics ; Visual Odometry ; Visualization</subject><ispartof>2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE), 2023, p.567-572</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10332956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10332956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Costa, Leonardo Rezende</creatorcontrib><creatorcontrib>Colombini, Esther Luna</creatorcontrib><title>Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry?</title><title>2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE)</title><addtitle>LARS/SBR/WRE</addtitle><description>This work introduces a novel approach to improve robot perception in dynamic environments using Semantic Filtering. The goal is to enhance Visual Simultaneous Localization and Mapping (V-SLAM) and Visual Odometry (VO) tasks by excluding feature points associated with moving objects. Four different approaches for semantic extraction, namely YOLOv3, DeepLabv3 with two different backbones, and Mask R-CNN, were evaluated. The framework was tested on various datasets, including KITTI, TUM and a simulated sequence generated on AirSim. The results demonstrated that the proposed semantic filtering significantly reduced estimation errors in VO tasks, with average error reduction ranging from 2.81% to 15.98%, while the results for V-SLAM were similar to the base work, especially for sequences with detected loops. Although fewer keypoints are used, the estimations benefit from the points excluded in VO. More experiments are needed to address the effects in VSLAM due to the presence of loop closure and the nature of the datasets.</description><subject>Feature extraction</subject><subject>Filtering</subject><subject>Semantic</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Trajectory</subject><subject>V-SLAM</subject><subject>Vehicle dynamics</subject><subject>Visual Odometry</subject><subject>Visualization</subject><issn>2643-685X</issn><isbn>9798350315387</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1LAzEURaMgWGr_gYvsXE37kjfJJCuptVVhpNDxo7vyMpNISmdaZkah_96CdnU5m8u5l7E7AWMhwE7y6aqYFA-ryedqrmyamrEEiWMBiNIqfcFGNrMGFaBQaLJLNpA6xUQbtb5mo67bAgBKSAGyAVvPqOGFr6npY5k46nzFF3HX-zY2X3wf-OOxoTqWfOm2vuw7HutDu__x_CN237TjRT595dRUZ15W-9r37fH-hl0F2nV-9J9D9r6Yv82ek3z59DKb5kk8KfSJU8EFUOgMSJ1VpSktnvRtcI6UhpCRJiMqC5ZkqimglyVpFKic0adZOGS3f73Re785tLGm9rg5n4G_93BViA</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Costa, Leonardo Rezende</creator><creator>Colombini, Esther Luna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231009</creationdate><title>Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry?</title><author>Costa, Leonardo Rezende ; Colombini, Esther Luna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-b5fbf053b80267dc8c939799fbba560f7a6a81d909a246af3e2ca63135b866433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Feature extraction</topic><topic>Filtering</topic><topic>Semantic</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Trajectory</topic><topic>V-SLAM</topic><topic>Vehicle dynamics</topic><topic>Visual Odometry</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Costa, Leonardo Rezende</creatorcontrib><creatorcontrib>Colombini, Esther Luna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Costa, Leonardo Rezende</au><au>Colombini, Esther Luna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry?</atitle><btitle>2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE)</btitle><stitle>LARS/SBR/WRE</stitle><date>2023-10-09</date><risdate>2023</risdate><spage>567</spage><epage>572</epage><pages>567-572</pages><eissn>2643-685X</eissn><eisbn>9798350315387</eisbn><abstract>This work introduces a novel approach to improve robot perception in dynamic environments using Semantic Filtering. The goal is to enhance Visual Simultaneous Localization and Mapping (V-SLAM) and Visual Odometry (VO) tasks by excluding feature points associated with moving objects. Four different approaches for semantic extraction, namely YOLOv3, DeepLabv3 with two different backbones, and Mask R-CNN, were evaluated. The framework was tested on various datasets, including KITTI, TUM and a simulated sequence generated on AirSim. The results demonstrated that the proposed semantic filtering significantly reduced estimation errors in VO tasks, with average error reduction ranging from 2.81% to 15.98%, while the results for V-SLAM were similar to the base work, especially for sequences with detected loops. Although fewer keypoints are used, the estimations benefit from the points excluded in VO. More experiments are needed to address the effects in VSLAM due to the presence of loop closure and the nature of the datasets.</abstract><pub>IEEE</pub><doi>10.1109/LARS/SBR/WRE59448.2023.10332956</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2643-685X |
ispartof | 2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE), 2023, p.567-572 |
issn | 2643-685X |
language | eng |
recordid | cdi_ieee_primary_10332956 |
source | IEEE Xplore All Conference Series |
subjects | Feature extraction Filtering Semantic Semantics Simultaneous localization and mapping Trajectory V-SLAM Vehicle dynamics Visual Odometry Visualization |
title | Can Semantic-based Filtering of Dynamic Objects improve Visual SLAM and Visual Odometry? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Can%20Semantic-based%20Filtering%20of%20Dynamic%20Objects%20improve%20Visual%20SLAM%20and%20Visual%20Odometry?&rft.btitle=2023%20Latin%20American%20Robotics%20Symposium%20(LARS),%202023%20Brazilian%20Symposium%20on%20Robotics%20(SBR),%20and%202023%20Workshop%20on%20Robotics%20in%20Education%20(WRE)&rft.au=Costa,%20Leonardo%20Rezende&rft.date=2023-10-09&rft.spage=567&rft.epage=572&rft.pages=567-572&rft.eissn=2643-685X&rft_id=info:doi/10.1109/LARS/SBR/WRE59448.2023.10332956&rft.eisbn=9798350315387&rft_dat=%3Cieee_CHZPO%3E10332956%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-b5fbf053b80267dc8c939799fbba560f7a6a81d909a246af3e2ca63135b866433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10332956&rfr_iscdi=true |