Loading…

Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter

This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study...

Full description

Saved in:
Bibliographic Details
Main Authors: Rozo-Osorio, David, Nunez-Lopez, Juan D., Lopez-Gonzalez, Alexandro, Ramirez-Neria, Mario, Tejada, Juan C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Rozo-Osorio, David
Nunez-Lopez, Juan D.
Lopez-Gonzalez, Alexandro
Ramirez-Neria, Mario
Tejada, Juan C.
description This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.
doi_str_mv 10.1109/CCAC58200.2023.10333445
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10333445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10333445</ieee_id><sourcerecordid>10333445</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-144d9af0f7bfd00bec62ffaf3445e6fcc53341655aab2bf10233eaac4d190af23</originalsourceid><addsrcrecordid>eNo1kNtKw0AURUdBsNT-geD8QOqZS5KObyX0Irb0xdtbOUnONCO5yGRa6N-boj7th83esBZjDwKmQoB5zLJ5Fs8kwFSCVFMBSimt4ys2MamZqRiU1KlU12wkE6MjZdTnLZv0_RcAKJGmsU5H7LRoK2wL1x74ruwaCv7MF31wDQbXtdx2nm-73NXEV747tiV_p8oVNfVPfEMn8ni4TD8qonqo6q5w4cy3hP3RU0Nt6DkOo1ARf8G6wZYvXR3I37Ebi3VPk78cs7fl4jVbR5vd6jmbbyInQYdIaF0atGDT3JYAORWJtBbthZMSWxTxgCySOEbMZW7F4EERYqFLYQCtVGN2__vriGj_7Qcuf97_q1I_L3dgQg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</title><source>IEEE Xplore All Conference Series</source><creator>Rozo-Osorio, David ; Nunez-Lopez, Juan D. ; Lopez-Gonzalez, Alexandro ; Ramirez-Neria, Mario ; Tejada, Juan C.</creator><creatorcontrib>Rozo-Osorio, David ; Nunez-Lopez, Juan D. ; Lopez-Gonzalez, Alexandro ; Ramirez-Neria, Mario ; Tejada, Juan C.</creatorcontrib><description>This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.</description><identifier>EISSN: 2694-393X</identifier><identifier>EISBN: 9798350324723</identifier><identifier>DOI: 10.1109/CCAC58200.2023.10333445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Estimation ; Extended Kalman Filter ; Land vehicles ; Mobile Ground Vehicles ; Odometry ; Pose Estimation ; Space-State ; Trajectory ; Velocity measurement ; Wheels</subject><ispartof>2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10333445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10333445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rozo-Osorio, David</creatorcontrib><creatorcontrib>Nunez-Lopez, Juan D.</creatorcontrib><creatorcontrib>Lopez-Gonzalez, Alexandro</creatorcontrib><creatorcontrib>Ramirez-Neria, Mario</creatorcontrib><creatorcontrib>Tejada, Juan C.</creatorcontrib><title>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</title><title>2023 IEEE 6th Colombian Conference on Automatic Control (CCAC)</title><addtitle>CCAC</addtitle><description>This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.</description><subject>Approximation algorithms</subject><subject>Estimation</subject><subject>Extended Kalman Filter</subject><subject>Land vehicles</subject><subject>Mobile Ground Vehicles</subject><subject>Odometry</subject><subject>Pose Estimation</subject><subject>Space-State</subject><subject>Trajectory</subject><subject>Velocity measurement</subject><subject>Wheels</subject><issn>2694-393X</issn><isbn>9798350324723</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKw0AURUdBsNT-geD8QOqZS5KObyX0Irb0xdtbOUnONCO5yGRa6N-boj7th83esBZjDwKmQoB5zLJ5Fs8kwFSCVFMBSimt4ys2MamZqRiU1KlU12wkE6MjZdTnLZv0_RcAKJGmsU5H7LRoK2wL1x74ruwaCv7MF31wDQbXtdx2nm-73NXEV747tiV_p8oVNfVPfEMn8ni4TD8qonqo6q5w4cy3hP3RU0Nt6DkOo1ARf8G6wZYvXR3I37Ebi3VPk78cs7fl4jVbR5vd6jmbbyInQYdIaF0atGDT3JYAORWJtBbthZMSWxTxgCySOEbMZW7F4EERYqFLYQCtVGN2__vriGj_7Qcuf97_q1I_L3dgQg</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Rozo-Osorio, David</creator><creator>Nunez-Lopez, Juan D.</creator><creator>Lopez-Gonzalez, Alexandro</creator><creator>Ramirez-Neria, Mario</creator><creator>Tejada, Juan C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231017</creationdate><title>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</title><author>Rozo-Osorio, David ; Nunez-Lopez, Juan D. ; Lopez-Gonzalez, Alexandro ; Ramirez-Neria, Mario ; Tejada, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-144d9af0f7bfd00bec62ffaf3445e6fcc53341655aab2bf10233eaac4d190af23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation algorithms</topic><topic>Estimation</topic><topic>Extended Kalman Filter</topic><topic>Land vehicles</topic><topic>Mobile Ground Vehicles</topic><topic>Odometry</topic><topic>Pose Estimation</topic><topic>Space-State</topic><topic>Trajectory</topic><topic>Velocity measurement</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Rozo-Osorio, David</creatorcontrib><creatorcontrib>Nunez-Lopez, Juan D.</creatorcontrib><creatorcontrib>Lopez-Gonzalez, Alexandro</creatorcontrib><creatorcontrib>Ramirez-Neria, Mario</creatorcontrib><creatorcontrib>Tejada, Juan C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rozo-Osorio, David</au><au>Nunez-Lopez, Juan D.</au><au>Lopez-Gonzalez, Alexandro</au><au>Ramirez-Neria, Mario</au><au>Tejada, Juan C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</atitle><btitle>2023 IEEE 6th Colombian Conference on Automatic Control (CCAC)</btitle><stitle>CCAC</stitle><date>2023-10-17</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2694-393X</eissn><eisbn>9798350324723</eisbn><abstract>This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.</abstract><pub>IEEE</pub><doi>10.1109/CCAC58200.2023.10333445</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2694-393X
ispartof 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), 2023, p.1-6
issn 2694-393X
language eng
recordid cdi_ieee_primary_10333445
source IEEE Xplore All Conference Series
subjects Approximation algorithms
Estimation
Extended Kalman Filter
Land vehicles
Mobile Ground Vehicles
Odometry
Pose Estimation
Space-State
Trajectory
Velocity measurement
Wheels
title Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhancing%20Odometry%20Estimation%20for%20Mobile%20Ground%20Vehicles:%20Leveraging%20Wheel%20Velocity%20Measurements%20and%20the%20Kalman%20Filter&rft.btitle=2023%20IEEE%206th%20Colombian%20Conference%20on%20Automatic%20Control%20(CCAC)&rft.au=Rozo-Osorio,%20David&rft.date=2023-10-17&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2694-393X&rft_id=info:doi/10.1109/CCAC58200.2023.10333445&rft.eisbn=9798350324723&rft_dat=%3Cieee_CHZPO%3E10333445%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-144d9af0f7bfd00bec62ffaf3445e6fcc53341655aab2bf10233eaac4d190af23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10333445&rfr_iscdi=true