Loading…
Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter
This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Rozo-Osorio, David Nunez-Lopez, Juan D. Lopez-Gonzalez, Alexandro Ramirez-Neria, Mario Tejada, Juan C. |
description | This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles. |
doi_str_mv | 10.1109/CCAC58200.2023.10333445 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10333445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10333445</ieee_id><sourcerecordid>10333445</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-144d9af0f7bfd00bec62ffaf3445e6fcc53341655aab2bf10233eaac4d190af23</originalsourceid><addsrcrecordid>eNo1kNtKw0AURUdBsNT-geD8QOqZS5KObyX0Irb0xdtbOUnONCO5yGRa6N-boj7th83esBZjDwKmQoB5zLJ5Fs8kwFSCVFMBSimt4ys2MamZqRiU1KlU12wkE6MjZdTnLZv0_RcAKJGmsU5H7LRoK2wL1x74ruwaCv7MF31wDQbXtdx2nm-73NXEV747tiV_p8oVNfVPfEMn8ni4TD8qonqo6q5w4cy3hP3RU0Nt6DkOo1ARf8G6wZYvXR3I37Ebi3VPk78cs7fl4jVbR5vd6jmbbyInQYdIaF0atGDT3JYAORWJtBbthZMSWxTxgCySOEbMZW7F4EERYqFLYQCtVGN2__vriGj_7Qcuf97_q1I_L3dgQg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</title><source>IEEE Xplore All Conference Series</source><creator>Rozo-Osorio, David ; Nunez-Lopez, Juan D. ; Lopez-Gonzalez, Alexandro ; Ramirez-Neria, Mario ; Tejada, Juan C.</creator><creatorcontrib>Rozo-Osorio, David ; Nunez-Lopez, Juan D. ; Lopez-Gonzalez, Alexandro ; Ramirez-Neria, Mario ; Tejada, Juan C.</creatorcontrib><description>This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.</description><identifier>EISSN: 2694-393X</identifier><identifier>EISBN: 9798350324723</identifier><identifier>DOI: 10.1109/CCAC58200.2023.10333445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Estimation ; Extended Kalman Filter ; Land vehicles ; Mobile Ground Vehicles ; Odometry ; Pose Estimation ; Space-State ; Trajectory ; Velocity measurement ; Wheels</subject><ispartof>2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10333445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10333445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rozo-Osorio, David</creatorcontrib><creatorcontrib>Nunez-Lopez, Juan D.</creatorcontrib><creatorcontrib>Lopez-Gonzalez, Alexandro</creatorcontrib><creatorcontrib>Ramirez-Neria, Mario</creatorcontrib><creatorcontrib>Tejada, Juan C.</creatorcontrib><title>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</title><title>2023 IEEE 6th Colombian Conference on Automatic Control (CCAC)</title><addtitle>CCAC</addtitle><description>This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.</description><subject>Approximation algorithms</subject><subject>Estimation</subject><subject>Extended Kalman Filter</subject><subject>Land vehicles</subject><subject>Mobile Ground Vehicles</subject><subject>Odometry</subject><subject>Pose Estimation</subject><subject>Space-State</subject><subject>Trajectory</subject><subject>Velocity measurement</subject><subject>Wheels</subject><issn>2694-393X</issn><isbn>9798350324723</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKw0AURUdBsNT-geD8QOqZS5KObyX0Irb0xdtbOUnONCO5yGRa6N-boj7th83esBZjDwKmQoB5zLJ5Fs8kwFSCVFMBSimt4ys2MamZqRiU1KlU12wkE6MjZdTnLZv0_RcAKJGmsU5H7LRoK2wL1x74ruwaCv7MF31wDQbXtdx2nm-73NXEV747tiV_p8oVNfVPfEMn8ni4TD8qonqo6q5w4cy3hP3RU0Nt6DkOo1ARf8G6wZYvXR3I37Ebi3VPk78cs7fl4jVbR5vd6jmbbyInQYdIaF0atGDT3JYAORWJtBbthZMSWxTxgCySOEbMZW7F4EERYqFLYQCtVGN2__vriGj_7Qcuf97_q1I_L3dgQg</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Rozo-Osorio, David</creator><creator>Nunez-Lopez, Juan D.</creator><creator>Lopez-Gonzalez, Alexandro</creator><creator>Ramirez-Neria, Mario</creator><creator>Tejada, Juan C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231017</creationdate><title>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</title><author>Rozo-Osorio, David ; Nunez-Lopez, Juan D. ; Lopez-Gonzalez, Alexandro ; Ramirez-Neria, Mario ; Tejada, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-144d9af0f7bfd00bec62ffaf3445e6fcc53341655aab2bf10233eaac4d190af23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation algorithms</topic><topic>Estimation</topic><topic>Extended Kalman Filter</topic><topic>Land vehicles</topic><topic>Mobile Ground Vehicles</topic><topic>Odometry</topic><topic>Pose Estimation</topic><topic>Space-State</topic><topic>Trajectory</topic><topic>Velocity measurement</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Rozo-Osorio, David</creatorcontrib><creatorcontrib>Nunez-Lopez, Juan D.</creatorcontrib><creatorcontrib>Lopez-Gonzalez, Alexandro</creatorcontrib><creatorcontrib>Ramirez-Neria, Mario</creatorcontrib><creatorcontrib>Tejada, Juan C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rozo-Osorio, David</au><au>Nunez-Lopez, Juan D.</au><au>Lopez-Gonzalez, Alexandro</au><au>Ramirez-Neria, Mario</au><au>Tejada, Juan C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter</atitle><btitle>2023 IEEE 6th Colombian Conference on Automatic Control (CCAC)</btitle><stitle>CCAC</stitle><date>2023-10-17</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2694-393X</eissn><eisbn>9798350324723</eisbn><abstract>This paper delves into the initial phase of developing an autonomous navigation system for mobile platforms. It examines the impact of wheel velocity measurements on odometry estimation, considering the transition from a reliable and precise signal to noisy and less dependable information. The study investigates how this range of available data influences the accuracy of pose estimation for a ground vehicle. Additionally, the paper explores the incorporation of the Kalman Filter as a supplementary tool to enhance the input data quality, resulting in a consistent and reliable estimation of the ground vehicle's position and orientation. The findings presented herein contribute to the advancement of autonomous navigation systems, providing valuable insights into improving odometry estimation for mobile ground vehicles.</abstract><pub>IEEE</pub><doi>10.1109/CCAC58200.2023.10333445</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2694-393X |
ispartof | 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), 2023, p.1-6 |
issn | 2694-393X |
language | eng |
recordid | cdi_ieee_primary_10333445 |
source | IEEE Xplore All Conference Series |
subjects | Approximation algorithms Estimation Extended Kalman Filter Land vehicles Mobile Ground Vehicles Odometry Pose Estimation Space-State Trajectory Velocity measurement Wheels |
title | Enhancing Odometry Estimation for Mobile Ground Vehicles: Leveraging Wheel Velocity Measurements and the Kalman Filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhancing%20Odometry%20Estimation%20for%20Mobile%20Ground%20Vehicles:%20Leveraging%20Wheel%20Velocity%20Measurements%20and%20the%20Kalman%20Filter&rft.btitle=2023%20IEEE%206th%20Colombian%20Conference%20on%20Automatic%20Control%20(CCAC)&rft.au=Rozo-Osorio,%20David&rft.date=2023-10-17&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2694-393X&rft_id=info:doi/10.1109/CCAC58200.2023.10333445&rft.eisbn=9798350324723&rft_dat=%3Cieee_CHZPO%3E10333445%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-144d9af0f7bfd00bec62ffaf3445e6fcc53341655aab2bf10233eaac4d190af23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10333445&rfr_iscdi=true |