Loading…

Seismic Random Noise Attenuation Using Optimal Empirical Wavelet Transform With a New Wavelet Thresholding Technique

The most vital challenge in seismic signal processing is the attenuation of random noise in seismic data. Many attenuation methods are formulated to mitigate the random noise but fail to retain high accuracy. In this article, a hybrid methodology based on optimal empirical wavelet transform (OEWT),...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-01, Vol.24 (1), p.596-606
Main Authors: Geetha, K., Hota, Malaya Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63
cites cdi_FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63
container_end_page 606
container_issue 1
container_start_page 596
container_title IEEE sensors journal
container_volume 24
creator Geetha, K.
Hota, Malaya Kumar
description The most vital challenge in seismic signal processing is the attenuation of random noise in seismic data. Many attenuation methods are formulated to mitigate the random noise but fail to retain high accuracy. In this article, a hybrid methodology based on optimal empirical wavelet transform (OEWT), energy kurtosis mean filtering (EKMF), and new wavelet thresholding (NWT) technique, namely, OEWT-EKMF-NWT, is proposed to suppress the random noise in the seismic signals. In the proposed OEWT-EKMF-NWT method, the OEWT decomposes the seismic signal into several intrinsic mode functions (IMFs) using the segmentation method. The mountain gazelle optimizer (MGO) algorithm with correlation waveform index (CWI) as an objective function is used here to choose the segmentation method optimally. Then, the EKMF is applied to select relevant optimal IMFs, which partially suppress the random noise. Furthermore, an NWT is proposed based on the discrete wavelet transform (DWT) to the relevant optimal IMFs. Here, an adaptive threshold calculation is designed based on the wavelet coefficients at different decomposition levels, which suppresses the random noise effectively. Finally, experiments are conducted on synthetic and real seismic signals to assess the efficacy of the proposed OEWT-EKMF-NWT method. The results reveal that the proposed OEWT-EKMF-NWT method attains better performance than the existing denoising methods.
doi_str_mv 10.1109/JSEN.2023.3334819
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10335603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10335603</ieee_id><sourcerecordid>2909283902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWKsPIHgR8Hprstntbi5LqSdKC7al3oVsduKmdA8mqeLbm6UFvZkD8_8zzIfQLSUjSgl_eF3NFqOYxGzEGEtyys_QgKZpHtEsyc_7mpEoYdn7JbpybkcI5VmaDZBfgXG1UfhNNmVb40VrHOCJ99AcpDdtgzfONB942XlTyz2e1Z2xRoVqK79gDx6vrWycbm2Nt8ZXWOIFfP8NKwuuavdlv2MNqmrM5wGu0YWWewc3pzxEm8fZevoczZdPL9PJPFIxT3xUFCBTqcYZz2LIKUuAljFwmShNFdOEkaRQWaJ1aGlR5AXjKeO0yGmpNFFjNkT3x72dbcNZ58WuPdgmnBQxJzzOGQ_EhogeVcq2zlnQorPhV_sjKBE9XNHDFT1ccYIbPHdHjwGAf3rG0nEIv_HFd_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909283902</pqid></control><display><type>article</type><title>Seismic Random Noise Attenuation Using Optimal Empirical Wavelet Transform With a New Wavelet Thresholding Technique</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Geetha, K. ; Hota, Malaya Kumar</creator><creatorcontrib>Geetha, K. ; Hota, Malaya Kumar</creatorcontrib><description>The most vital challenge in seismic signal processing is the attenuation of random noise in seismic data. Many attenuation methods are formulated to mitigate the random noise but fail to retain high accuracy. In this article, a hybrid methodology based on optimal empirical wavelet transform (OEWT), energy kurtosis mean filtering (EKMF), and new wavelet thresholding (NWT) technique, namely, OEWT-EKMF-NWT, is proposed to suppress the random noise in the seismic signals. In the proposed OEWT-EKMF-NWT method, the OEWT decomposes the seismic signal into several intrinsic mode functions (IMFs) using the segmentation method. The mountain gazelle optimizer (MGO) algorithm with correlation waveform index (CWI) as an objective function is used here to choose the segmentation method optimally. Then, the EKMF is applied to select relevant optimal IMFs, which partially suppress the random noise. Furthermore, an NWT is proposed based on the discrete wavelet transform (DWT) to the relevant optimal IMFs. Here, an adaptive threshold calculation is designed based on the wavelet coefficients at different decomposition levels, which suppresses the random noise effectively. Finally, experiments are conducted on synthetic and real seismic signals to assess the efficacy of the proposed OEWT-EKMF-NWT method. The results reveal that the proposed OEWT-EKMF-NWT method attains better performance than the existing denoising methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3334819</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attenuation ; Decomposition ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Energy kurtosis mean filtering (EKMF) ; Kurtosis ; Mathematical analysis ; mountain gazelle optimizer (MGO) ; new wavelet thresholding (NWT) technique ; Noise measurement ; Noise reduction ; optimal empirical wavelet transform (OEWT) ; Optimization ; Random noise ; Segmentation ; seismic signal ; Sensors ; Signal processing ; Time-frequency analysis ; Wave attenuation ; Waveforms ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (1), p.596-606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63</citedby><cites>FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63</cites><orcidid>0000-0002-3669-1611 ; 0000-0002-3276-3657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10335603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Geetha, K.</creatorcontrib><creatorcontrib>Hota, Malaya Kumar</creatorcontrib><title>Seismic Random Noise Attenuation Using Optimal Empirical Wavelet Transform With a New Wavelet Thresholding Technique</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The most vital challenge in seismic signal processing is the attenuation of random noise in seismic data. Many attenuation methods are formulated to mitigate the random noise but fail to retain high accuracy. In this article, a hybrid methodology based on optimal empirical wavelet transform (OEWT), energy kurtosis mean filtering (EKMF), and new wavelet thresholding (NWT) technique, namely, OEWT-EKMF-NWT, is proposed to suppress the random noise in the seismic signals. In the proposed OEWT-EKMF-NWT method, the OEWT decomposes the seismic signal into several intrinsic mode functions (IMFs) using the segmentation method. The mountain gazelle optimizer (MGO) algorithm with correlation waveform index (CWI) as an objective function is used here to choose the segmentation method optimally. Then, the EKMF is applied to select relevant optimal IMFs, which partially suppress the random noise. Furthermore, an NWT is proposed based on the discrete wavelet transform (DWT) to the relevant optimal IMFs. Here, an adaptive threshold calculation is designed based on the wavelet coefficients at different decomposition levels, which suppresses the random noise effectively. Finally, experiments are conducted on synthetic and real seismic signals to assess the efficacy of the proposed OEWT-EKMF-NWT method. The results reveal that the proposed OEWT-EKMF-NWT method attains better performance than the existing denoising methods.</description><subject>Algorithms</subject><subject>Attenuation</subject><subject>Decomposition</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Energy kurtosis mean filtering (EKMF)</subject><subject>Kurtosis</subject><subject>Mathematical analysis</subject><subject>mountain gazelle optimizer (MGO)</subject><subject>new wavelet thresholding (NWT) technique</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>optimal empirical wavelet transform (OEWT)</subject><subject>Optimization</subject><subject>Random noise</subject><subject>Segmentation</subject><subject>seismic signal</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Time-frequency analysis</subject><subject>Wave attenuation</subject><subject>Waveforms</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKAzEQhoMoWKsPIHgR8Hprstntbi5LqSdKC7al3oVsduKmdA8mqeLbm6UFvZkD8_8zzIfQLSUjSgl_eF3NFqOYxGzEGEtyys_QgKZpHtEsyc_7mpEoYdn7JbpybkcI5VmaDZBfgXG1UfhNNmVb40VrHOCJ99AcpDdtgzfONB942XlTyz2e1Z2xRoVqK79gDx6vrWycbm2Nt8ZXWOIFfP8NKwuuavdlv2MNqmrM5wGu0YWWewc3pzxEm8fZevoczZdPL9PJPFIxT3xUFCBTqcYZz2LIKUuAljFwmShNFdOEkaRQWaJ1aGlR5AXjKeO0yGmpNFFjNkT3x72dbcNZ58WuPdgmnBQxJzzOGQ_EhogeVcq2zlnQorPhV_sjKBE9XNHDFT1ccYIbPHdHjwGAf3rG0nEIv_HFd_w</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Geetha, K.</creator><creator>Hota, Malaya Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3669-1611</orcidid><orcidid>https://orcid.org/0000-0002-3276-3657</orcidid></search><sort><creationdate>20240101</creationdate><title>Seismic Random Noise Attenuation Using Optimal Empirical Wavelet Transform With a New Wavelet Thresholding Technique</title><author>Geetha, K. ; Hota, Malaya Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Attenuation</topic><topic>Decomposition</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Energy kurtosis mean filtering (EKMF)</topic><topic>Kurtosis</topic><topic>Mathematical analysis</topic><topic>mountain gazelle optimizer (MGO)</topic><topic>new wavelet thresholding (NWT) technique</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>optimal empirical wavelet transform (OEWT)</topic><topic>Optimization</topic><topic>Random noise</topic><topic>Segmentation</topic><topic>seismic signal</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Time-frequency analysis</topic><topic>Wave attenuation</topic><topic>Waveforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geetha, K.</creatorcontrib><creatorcontrib>Hota, Malaya Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geetha, K.</au><au>Hota, Malaya Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Random Noise Attenuation Using Optimal Empirical Wavelet Transform With a New Wavelet Thresholding Technique</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>596</spage><epage>606</epage><pages>596-606</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The most vital challenge in seismic signal processing is the attenuation of random noise in seismic data. Many attenuation methods are formulated to mitigate the random noise but fail to retain high accuracy. In this article, a hybrid methodology based on optimal empirical wavelet transform (OEWT), energy kurtosis mean filtering (EKMF), and new wavelet thresholding (NWT) technique, namely, OEWT-EKMF-NWT, is proposed to suppress the random noise in the seismic signals. In the proposed OEWT-EKMF-NWT method, the OEWT decomposes the seismic signal into several intrinsic mode functions (IMFs) using the segmentation method. The mountain gazelle optimizer (MGO) algorithm with correlation waveform index (CWI) as an objective function is used here to choose the segmentation method optimally. Then, the EKMF is applied to select relevant optimal IMFs, which partially suppress the random noise. Furthermore, an NWT is proposed based on the discrete wavelet transform (DWT) to the relevant optimal IMFs. Here, an adaptive threshold calculation is designed based on the wavelet coefficients at different decomposition levels, which suppresses the random noise effectively. Finally, experiments are conducted on synthetic and real seismic signals to assess the efficacy of the proposed OEWT-EKMF-NWT method. The results reveal that the proposed OEWT-EKMF-NWT method attains better performance than the existing denoising methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3334819</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3669-1611</orcidid><orcidid>https://orcid.org/0000-0002-3276-3657</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-01, Vol.24 (1), p.596-606
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10335603
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Attenuation
Decomposition
Discrete Wavelet Transform
Discrete wavelet transforms
Energy kurtosis mean filtering (EKMF)
Kurtosis
Mathematical analysis
mountain gazelle optimizer (MGO)
new wavelet thresholding (NWT) technique
Noise measurement
Noise reduction
optimal empirical wavelet transform (OEWT)
Optimization
Random noise
Segmentation
seismic signal
Sensors
Signal processing
Time-frequency analysis
Wave attenuation
Waveforms
Wavelet transforms
title Seismic Random Noise Attenuation Using Optimal Empirical Wavelet Transform With a New Wavelet Thresholding Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Random%20Noise%20Attenuation%20Using%20Optimal%20Empirical%20Wavelet%20Transform%20With%20a%20New%20Wavelet%20Thresholding%20Technique&rft.jtitle=IEEE%20sensors%20journal&rft.au=Geetha,%20K.&rft.date=2024-01-01&rft.volume=24&rft.issue=1&rft.spage=596&rft.epage=606&rft.pages=596-606&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3334819&rft_dat=%3Cproquest_ieee_%3E2909283902%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-bbea5ac67972e8134e1d2e9a4cf1c3f0304bc74fff1c1bb8b395391b81dcf0c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909283902&rft_id=info:pmid/&rft_ieee_id=10335603&rfr_iscdi=true