Loading…

Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot

In this paper we explore intent recognition models of user messages sent to a chatbot that primarily uses system-initiated navigation. The chatbot (askNivi) discusses sexual and reproductive health topics for educational purposes and to facilitate healthcare access. It is deployed in four languages,...

Full description

Saved in:
Bibliographic Details
Main Authors: Tresner-Kirsch, David, Mikkelson, Amanda Azari, Yinka-Banjo, Chika, Akinyemi, Mary, Goyal, Siddhartha
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 459
container_issue
container_start_page 457
container_title
container_volume
creator Tresner-Kirsch, David
Mikkelson, Amanda Azari
Yinka-Banjo, Chika
Akinyemi, Mary
Goyal, Siddhartha
description In this paper we explore intent recognition models of user messages sent to a chatbot that primarily uses system-initiated navigation. The chatbot (askNivi) discusses sexual and reproductive health topics for educational purposes and to facilitate healthcare access. It is deployed in four languages, three of which are considered low-resource languages (Hausa, Hindi, and Swahili; the fourth language is English). Although the primary navigation mode is system-initiated, many users attempt to take initiative by expressing various intents with natural language messages. This paper describes a multi-lingual corpus of those initiative attempts manually annotated with intent labels as well as results of modeling experiments on the classification of these intents using context-dependent supervised machine learning.
doi_str_mv 10.1109/ICHI57859.2023.00066
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10337283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10337283</ieee_id><sourcerecordid>10337283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-14847b8bf1dc5355e1d22910ca9d85732646538050f72bc4ffe2ded9d4caf82f3</originalsourceid><addsrcrecordid>eNotjNFKwzAUhqMgOGbfYBd5gc6TnKZJLqWoK3QIY16PtD3pqrUdTYb49hYUfvj-i4-PsY2ArRBgH8tiVyptlN1KkLgFgDy_YYnV1qACBJmjvWUrqbRKl5_dsySEj0VDYRcXVuxYjpHGyA_UTN3Yx34a-bJq-k4PFKbr3BCv3NhdXUd8TyEsDLwfueM7ckM8872bPyleBreYxdnFeooP7M67IVDyzzV7f3k-Fru0ensti6cq7YWwMRWZyXRtai_aRqFSJFoprYDG2dYojTLPcoUGFHgt6ybznmRLrW2zxnkjPa7Z5q_bE9HpMvdfbv45CUDU0iD-AiWCUbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot</title><source>IEEE Xplore All Conference Series</source><creator>Tresner-Kirsch, David ; Mikkelson, Amanda Azari ; Yinka-Banjo, Chika ; Akinyemi, Mary ; Goyal, Siddhartha</creator><creatorcontrib>Tresner-Kirsch, David ; Mikkelson, Amanda Azari ; Yinka-Banjo, Chika ; Akinyemi, Mary ; Goyal, Siddhartha</creatorcontrib><description>In this paper we explore intent recognition models of user messages sent to a chatbot that primarily uses system-initiated navigation. The chatbot (askNivi) discusses sexual and reproductive health topics for educational purposes and to facilitate healthcare access. It is deployed in four languages, three of which are considered low-resource languages (Hausa, Hindi, and Swahili; the fourth language is English). Although the primary navigation mode is system-initiated, many users attempt to take initiative by expressing various intents with natural language messages. This paper describes a multi-lingual corpus of those initiative attempts manually annotated with intent labels as well as results of modeling experiments on the classification of these intents using context-dependent supervised machine learning.</description><identifier>EISSN: 2575-2634</identifier><identifier>EISBN: 9798350302639</identifier><identifier>DOI: 10.1109/ICHI57859.2023.00066</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chatbots ; Context modeling ; dialogue systems ; Informatics ; intent recognition ; Machine learning ; Medical services ; Natural Language Processing (NLP) ; Navigation ; sexual and reproductive health</subject><ispartof>2023 IEEE 11th International Conference on Healthcare Informatics (ICHI), 2023, p.457-459</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10337283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10337283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tresner-Kirsch, David</creatorcontrib><creatorcontrib>Mikkelson, Amanda Azari</creatorcontrib><creatorcontrib>Yinka-Banjo, Chika</creatorcontrib><creatorcontrib>Akinyemi, Mary</creatorcontrib><creatorcontrib>Goyal, Siddhartha</creatorcontrib><title>Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot</title><title>2023 IEEE 11th International Conference on Healthcare Informatics (ICHI)</title><addtitle>ICHI</addtitle><description>In this paper we explore intent recognition models of user messages sent to a chatbot that primarily uses system-initiated navigation. The chatbot (askNivi) discusses sexual and reproductive health topics for educational purposes and to facilitate healthcare access. It is deployed in four languages, three of which are considered low-resource languages (Hausa, Hindi, and Swahili; the fourth language is English). Although the primary navigation mode is system-initiated, many users attempt to take initiative by expressing various intents with natural language messages. This paper describes a multi-lingual corpus of those initiative attempts manually annotated with intent labels as well as results of modeling experiments on the classification of these intents using context-dependent supervised machine learning.</description><subject>Chatbots</subject><subject>Context modeling</subject><subject>dialogue systems</subject><subject>Informatics</subject><subject>intent recognition</subject><subject>Machine learning</subject><subject>Medical services</subject><subject>Natural Language Processing (NLP)</subject><subject>Navigation</subject><subject>sexual and reproductive health</subject><issn>2575-2634</issn><isbn>9798350302639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjNFKwzAUhqMgOGbfYBd5gc6TnKZJLqWoK3QIY16PtD3pqrUdTYb49hYUfvj-i4-PsY2ArRBgH8tiVyptlN1KkLgFgDy_YYnV1qACBJmjvWUrqbRKl5_dsySEj0VDYRcXVuxYjpHGyA_UTN3Yx34a-bJq-k4PFKbr3BCv3NhdXUd8TyEsDLwfueM7ckM8872bPyleBreYxdnFeooP7M67IVDyzzV7f3k-Fru0ensti6cq7YWwMRWZyXRtai_aRqFSJFoprYDG2dYojTLPcoUGFHgt6ybznmRLrW2zxnkjPa7Z5q_bE9HpMvdfbv45CUDU0iD-AiWCUbQ</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Tresner-Kirsch, David</creator><creator>Mikkelson, Amanda Azari</creator><creator>Yinka-Banjo, Chika</creator><creator>Akinyemi, Mary</creator><creator>Goyal, Siddhartha</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230626</creationdate><title>Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot</title><author>Tresner-Kirsch, David ; Mikkelson, Amanda Azari ; Yinka-Banjo, Chika ; Akinyemi, Mary ; Goyal, Siddhartha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-14847b8bf1dc5355e1d22910ca9d85732646538050f72bc4ffe2ded9d4caf82f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chatbots</topic><topic>Context modeling</topic><topic>dialogue systems</topic><topic>Informatics</topic><topic>intent recognition</topic><topic>Machine learning</topic><topic>Medical services</topic><topic>Natural Language Processing (NLP)</topic><topic>Navigation</topic><topic>sexual and reproductive health</topic><toplevel>online_resources</toplevel><creatorcontrib>Tresner-Kirsch, David</creatorcontrib><creatorcontrib>Mikkelson, Amanda Azari</creatorcontrib><creatorcontrib>Yinka-Banjo, Chika</creatorcontrib><creatorcontrib>Akinyemi, Mary</creatorcontrib><creatorcontrib>Goyal, Siddhartha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tresner-Kirsch, David</au><au>Mikkelson, Amanda Azari</au><au>Yinka-Banjo, Chika</au><au>Akinyemi, Mary</au><au>Goyal, Siddhartha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot</atitle><btitle>2023 IEEE 11th International Conference on Healthcare Informatics (ICHI)</btitle><stitle>ICHI</stitle><date>2023-06-26</date><risdate>2023</risdate><spage>457</spage><epage>459</epage><pages>457-459</pages><eissn>2575-2634</eissn><eisbn>9798350302639</eisbn><coden>IEEPAD</coden><abstract>In this paper we explore intent recognition models of user messages sent to a chatbot that primarily uses system-initiated navigation. The chatbot (askNivi) discusses sexual and reproductive health topics for educational purposes and to facilitate healthcare access. It is deployed in four languages, three of which are considered low-resource languages (Hausa, Hindi, and Swahili; the fourth language is English). Although the primary navigation mode is system-initiated, many users attempt to take initiative by expressing various intents with natural language messages. This paper describes a multi-lingual corpus of those initiative attempts manually annotated with intent labels as well as results of modeling experiments on the classification of these intents using context-dependent supervised machine learning.</abstract><pub>IEEE</pub><doi>10.1109/ICHI57859.2023.00066</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-2634
ispartof 2023 IEEE 11th International Conference on Healthcare Informatics (ICHI), 2023, p.457-459
issn 2575-2634
language eng
recordid cdi_ieee_primary_10337283
source IEEE Xplore All Conference Series
subjects Chatbots
Context modeling
dialogue systems
Informatics
intent recognition
Machine learning
Medical services
Natural Language Processing (NLP)
Navigation
sexual and reproductive health
title Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intent%20Recognition%20on%20Low-Resource%20Language%20Messages%20in%20a%20Health%20Marketplace%20Chatbot&rft.btitle=2023%20IEEE%2011th%20International%20Conference%20on%20Healthcare%20Informatics%20(ICHI)&rft.au=Tresner-Kirsch,%20David&rft.date=2023-06-26&rft.spage=457&rft.epage=459&rft.pages=457-459&rft.eissn=2575-2634&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICHI57859.2023.00066&rft.eisbn=9798350302639&rft_dat=%3Cieee_CHZPO%3E10337283%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-14847b8bf1dc5355e1d22910ca9d85732646538050f72bc4ffe2ded9d4caf82f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10337283&rfr_iscdi=true