Loading…

SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome

Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillan...

Full description

Saved in:
Bibliographic Details
Main Authors: Borges, Natalia O., Fonseca, Livia G. C., Barreto, Priscila Solis, Alchieri, Eduardo A. P., Caetano, Marcos F., Araujo, Daniel C., Resende, Paulo Angelo A., Brandao, Leonardo, Vieira, Lucas
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Borges, Natalia O.
Fonseca, Livia G. C.
Barreto, Priscila Solis
Alchieri, Eduardo A. P.
Caetano, Marcos F.
Araujo, Daniel C.
Resende, Paulo Angelo A.
Brandao, Leonardo
Vieira, Lucas
description Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.
doi_str_mv 10.1109/CLEI60451.2023.10346186
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10346186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10346186</ieee_id><sourcerecordid>10346186</sourcerecordid><originalsourceid>FETCH-LOGICAL-i493-423fb83a470fb360cf686df181547d1eba523510cd590b88f2ef2625509db43c3</originalsourceid><addsrcrecordid>eNo1z8tKw0AUgOFRECy1byA4L5B4zpy5xV2NTQ1Uumj3JZczOtIkkmTTt3ehXf27D34hnhBSRMie892mtKANpgoUpQikLXp7I1aZyzwZIPTe2VuxUM5hYpxR92I1Td8AQAo0gl6I_LD5KPbb_Ytc97LsZz6f4yf3syziyPKNZ27mOPTycJlm7mQYRjl_scx5HKt2kK9x6PhB3IXqPPHqv0txLDbH_D3Z7bdlvt4lUWeUaEWh9lRpB6EmC02w3rYBPRrtWuS6MooMQtOaDGrvg-KgrDIGsrbW1NBSPP6xkZlPP2PsqvFyum7TL3FjSgU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</title><source>IEEE Xplore All Conference Series</source><creator>Borges, Natalia O. ; Fonseca, Livia G. C. ; Barreto, Priscila Solis ; Alchieri, Eduardo A. P. ; Caetano, Marcos F. ; Araujo, Daniel C. ; Resende, Paulo Angelo A. ; Brandao, Leonardo ; Vieira, Lucas</creator><creatorcontrib>Borges, Natalia O. ; Fonseca, Livia G. C. ; Barreto, Priscila Solis ; Alchieri, Eduardo A. P. ; Caetano, Marcos F. ; Araujo, Daniel C. ; Resende, Paulo Angelo A. ; Brandao, Leonardo ; Vieira, Lucas</creatorcontrib><description>Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.</description><identifier>EISSN: 2771-5752</identifier><identifier>EISBN: 9798350318876</identifier><identifier>DOI: 10.1109/CLEI60451.2023.10346186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cerrado Dataset ; Deep Learning ; Fire Detection ; Forestry ; Measurement ; Real-time systems ; Smoke Dataset ; South America ; Streaming media ; Training ; Video surveillance ; Wildfire</subject><ispartof>2023 XLIX Latin American Computer Conference (CLEI), 2023, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10346186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10346186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borges, Natalia O.</creatorcontrib><creatorcontrib>Fonseca, Livia G. C.</creatorcontrib><creatorcontrib>Barreto, Priscila Solis</creatorcontrib><creatorcontrib>Alchieri, Eduardo A. P.</creatorcontrib><creatorcontrib>Caetano, Marcos F.</creatorcontrib><creatorcontrib>Araujo, Daniel C.</creatorcontrib><creatorcontrib>Resende, Paulo Angelo A.</creatorcontrib><creatorcontrib>Brandao, Leonardo</creatorcontrib><creatorcontrib>Vieira, Lucas</creatorcontrib><title>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</title><title>2023 XLIX Latin American Computer Conference (CLEI)</title><addtitle>CLEI</addtitle><description>Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.</description><subject>Cerrado Dataset</subject><subject>Deep Learning</subject><subject>Fire Detection</subject><subject>Forestry</subject><subject>Measurement</subject><subject>Real-time systems</subject><subject>Smoke Dataset</subject><subject>South America</subject><subject>Streaming media</subject><subject>Training</subject><subject>Video surveillance</subject><subject>Wildfire</subject><issn>2771-5752</issn><isbn>9798350318876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1z8tKw0AUgOFRECy1byA4L5B4zpy5xV2NTQ1Uumj3JZczOtIkkmTTt3ehXf27D34hnhBSRMie892mtKANpgoUpQikLXp7I1aZyzwZIPTe2VuxUM5hYpxR92I1Td8AQAo0gl6I_LD5KPbb_Ytc97LsZz6f4yf3syziyPKNZ27mOPTycJlm7mQYRjl_scx5HKt2kK9x6PhB3IXqPPHqv0txLDbH_D3Z7bdlvt4lUWeUaEWh9lRpB6EmC02w3rYBPRrtWuS6MooMQtOaDGrvg-KgrDIGsrbW1NBSPP6xkZlPP2PsqvFyum7TL3FjSgU</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Borges, Natalia O.</creator><creator>Fonseca, Livia G. C.</creator><creator>Barreto, Priscila Solis</creator><creator>Alchieri, Eduardo A. P.</creator><creator>Caetano, Marcos F.</creator><creator>Araujo, Daniel C.</creator><creator>Resende, Paulo Angelo A.</creator><creator>Brandao, Leonardo</creator><creator>Vieira, Lucas</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231016</creationdate><title>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</title><author>Borges, Natalia O. ; Fonseca, Livia G. C. ; Barreto, Priscila Solis ; Alchieri, Eduardo A. P. ; Caetano, Marcos F. ; Araujo, Daniel C. ; Resende, Paulo Angelo A. ; Brandao, Leonardo ; Vieira, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i493-423fb83a470fb360cf686df181547d1eba523510cd590b88f2ef2625509db43c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cerrado Dataset</topic><topic>Deep Learning</topic><topic>Fire Detection</topic><topic>Forestry</topic><topic>Measurement</topic><topic>Real-time systems</topic><topic>Smoke Dataset</topic><topic>South America</topic><topic>Streaming media</topic><topic>Training</topic><topic>Video surveillance</topic><topic>Wildfire</topic><toplevel>online_resources</toplevel><creatorcontrib>Borges, Natalia O.</creatorcontrib><creatorcontrib>Fonseca, Livia G. C.</creatorcontrib><creatorcontrib>Barreto, Priscila Solis</creatorcontrib><creatorcontrib>Alchieri, Eduardo A. P.</creatorcontrib><creatorcontrib>Caetano, Marcos F.</creatorcontrib><creatorcontrib>Araujo, Daniel C.</creatorcontrib><creatorcontrib>Resende, Paulo Angelo A.</creatorcontrib><creatorcontrib>Brandao, Leonardo</creatorcontrib><creatorcontrib>Vieira, Lucas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borges, Natalia O.</au><au>Fonseca, Livia G. C.</au><au>Barreto, Priscila Solis</au><au>Alchieri, Eduardo A. P.</au><au>Caetano, Marcos F.</au><au>Araujo, Daniel C.</au><au>Resende, Paulo Angelo A.</au><au>Brandao, Leonardo</au><au>Vieira, Lucas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</atitle><btitle>2023 XLIX Latin American Computer Conference (CLEI)</btitle><stitle>CLEI</stitle><date>2023-10-16</date><risdate>2023</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><eissn>2771-5752</eissn><eisbn>9798350318876</eisbn><abstract>Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.</abstract><pub>IEEE</pub><doi>10.1109/CLEI60451.2023.10346186</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2771-5752
ispartof 2023 XLIX Latin American Computer Conference (CLEI), 2023, p.1-10
issn 2771-5752
language eng
recordid cdi_ieee_primary_10346186
source IEEE Xplore All Conference Series
subjects Cerrado Dataset
Deep Learning
Fire Detection
Forestry
Measurement
Real-time systems
Smoke Dataset
South America
Streaming media
Training
Video surveillance
Wildfire
title SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SEMFOGO:%20An%20Intelligent%20Fire%20Detection%20System%20for%20the%20Cerrado%20Biome&rft.btitle=2023%20XLIX%20Latin%20American%20Computer%20Conference%20(CLEI)&rft.au=Borges,%20Natalia%20O.&rft.date=2023-10-16&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.eissn=2771-5752&rft_id=info:doi/10.1109/CLEI60451.2023.10346186&rft.eisbn=9798350318876&rft_dat=%3Cieee_CHZPO%3E10346186%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i493-423fb83a470fb360cf686df181547d1eba523510cd590b88f2ef2625509db43c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10346186&rfr_iscdi=true