Loading…
SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome
Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillan...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Borges, Natalia O. Fonseca, Livia G. C. Barreto, Priscila Solis Alchieri, Eduardo A. P. Caetano, Marcos F. Araujo, Daniel C. Resende, Paulo Angelo A. Brandao, Leonardo Vieira, Lucas |
description | Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection. |
doi_str_mv | 10.1109/CLEI60451.2023.10346186 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10346186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10346186</ieee_id><sourcerecordid>10346186</sourcerecordid><originalsourceid>FETCH-LOGICAL-i493-423fb83a470fb360cf686df181547d1eba523510cd590b88f2ef2625509db43c3</originalsourceid><addsrcrecordid>eNo1z8tKw0AUgOFRECy1byA4L5B4zpy5xV2NTQ1Uumj3JZczOtIkkmTTt3ehXf27D34hnhBSRMie892mtKANpgoUpQikLXp7I1aZyzwZIPTe2VuxUM5hYpxR92I1Td8AQAo0gl6I_LD5KPbb_Ytc97LsZz6f4yf3syziyPKNZ27mOPTycJlm7mQYRjl_scx5HKt2kK9x6PhB3IXqPPHqv0txLDbH_D3Z7bdlvt4lUWeUaEWh9lRpB6EmC02w3rYBPRrtWuS6MooMQtOaDGrvg-KgrDIGsrbW1NBSPP6xkZlPP2PsqvFyum7TL3FjSgU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</title><source>IEEE Xplore All Conference Series</source><creator>Borges, Natalia O. ; Fonseca, Livia G. C. ; Barreto, Priscila Solis ; Alchieri, Eduardo A. P. ; Caetano, Marcos F. ; Araujo, Daniel C. ; Resende, Paulo Angelo A. ; Brandao, Leonardo ; Vieira, Lucas</creator><creatorcontrib>Borges, Natalia O. ; Fonseca, Livia G. C. ; Barreto, Priscila Solis ; Alchieri, Eduardo A. P. ; Caetano, Marcos F. ; Araujo, Daniel C. ; Resende, Paulo Angelo A. ; Brandao, Leonardo ; Vieira, Lucas</creatorcontrib><description>Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.</description><identifier>EISSN: 2771-5752</identifier><identifier>EISBN: 9798350318876</identifier><identifier>DOI: 10.1109/CLEI60451.2023.10346186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cerrado Dataset ; Deep Learning ; Fire Detection ; Forestry ; Measurement ; Real-time systems ; Smoke Dataset ; South America ; Streaming media ; Training ; Video surveillance ; Wildfire</subject><ispartof>2023 XLIX Latin American Computer Conference (CLEI), 2023, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10346186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10346186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borges, Natalia O.</creatorcontrib><creatorcontrib>Fonseca, Livia G. C.</creatorcontrib><creatorcontrib>Barreto, Priscila Solis</creatorcontrib><creatorcontrib>Alchieri, Eduardo A. P.</creatorcontrib><creatorcontrib>Caetano, Marcos F.</creatorcontrib><creatorcontrib>Araujo, Daniel C.</creatorcontrib><creatorcontrib>Resende, Paulo Angelo A.</creatorcontrib><creatorcontrib>Brandao, Leonardo</creatorcontrib><creatorcontrib>Vieira, Lucas</creatorcontrib><title>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</title><title>2023 XLIX Latin American Computer Conference (CLEI)</title><addtitle>CLEI</addtitle><description>Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.</description><subject>Cerrado Dataset</subject><subject>Deep Learning</subject><subject>Fire Detection</subject><subject>Forestry</subject><subject>Measurement</subject><subject>Real-time systems</subject><subject>Smoke Dataset</subject><subject>South America</subject><subject>Streaming media</subject><subject>Training</subject><subject>Video surveillance</subject><subject>Wildfire</subject><issn>2771-5752</issn><isbn>9798350318876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1z8tKw0AUgOFRECy1byA4L5B4zpy5xV2NTQ1Uumj3JZczOtIkkmTTt3ehXf27D34hnhBSRMie892mtKANpgoUpQikLXp7I1aZyzwZIPTe2VuxUM5hYpxR92I1Td8AQAo0gl6I_LD5KPbb_Ytc97LsZz6f4yf3syziyPKNZ27mOPTycJlm7mQYRjl_scx5HKt2kK9x6PhB3IXqPPHqv0txLDbH_D3Z7bdlvt4lUWeUaEWh9lRpB6EmC02w3rYBPRrtWuS6MooMQtOaDGrvg-KgrDIGsrbW1NBSPP6xkZlPP2PsqvFyum7TL3FjSgU</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Borges, Natalia O.</creator><creator>Fonseca, Livia G. C.</creator><creator>Barreto, Priscila Solis</creator><creator>Alchieri, Eduardo A. P.</creator><creator>Caetano, Marcos F.</creator><creator>Araujo, Daniel C.</creator><creator>Resende, Paulo Angelo A.</creator><creator>Brandao, Leonardo</creator><creator>Vieira, Lucas</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231016</creationdate><title>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</title><author>Borges, Natalia O. ; Fonseca, Livia G. C. ; Barreto, Priscila Solis ; Alchieri, Eduardo A. P. ; Caetano, Marcos F. ; Araujo, Daniel C. ; Resende, Paulo Angelo A. ; Brandao, Leonardo ; Vieira, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i493-423fb83a470fb360cf686df181547d1eba523510cd590b88f2ef2625509db43c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cerrado Dataset</topic><topic>Deep Learning</topic><topic>Fire Detection</topic><topic>Forestry</topic><topic>Measurement</topic><topic>Real-time systems</topic><topic>Smoke Dataset</topic><topic>South America</topic><topic>Streaming media</topic><topic>Training</topic><topic>Video surveillance</topic><topic>Wildfire</topic><toplevel>online_resources</toplevel><creatorcontrib>Borges, Natalia O.</creatorcontrib><creatorcontrib>Fonseca, Livia G. C.</creatorcontrib><creatorcontrib>Barreto, Priscila Solis</creatorcontrib><creatorcontrib>Alchieri, Eduardo A. P.</creatorcontrib><creatorcontrib>Caetano, Marcos F.</creatorcontrib><creatorcontrib>Araujo, Daniel C.</creatorcontrib><creatorcontrib>Resende, Paulo Angelo A.</creatorcontrib><creatorcontrib>Brandao, Leonardo</creatorcontrib><creatorcontrib>Vieira, Lucas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borges, Natalia O.</au><au>Fonseca, Livia G. C.</au><au>Barreto, Priscila Solis</au><au>Alchieri, Eduardo A. P.</au><au>Caetano, Marcos F.</au><au>Araujo, Daniel C.</au><au>Resende, Paulo Angelo A.</au><au>Brandao, Leonardo</au><au>Vieira, Lucas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome</atitle><btitle>2023 XLIX Latin American Computer Conference (CLEI)</btitle><stitle>CLEI</stitle><date>2023-10-16</date><risdate>2023</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><eissn>2771-5752</eissn><eisbn>9798350318876</eisbn><abstract>Forest fires have the potential to cause enormous social, economic and, above all, environmental damage. Nowadays, the intelligent and early detection of forest fires is a fundamental technological tool for rescue and emergency agencies in mitigating damage. Among the possibilities, video surveillance technology in conjunction with artificial intelligence and computer vision techniques proves to be an interesting solution. This work proposes the SEMFOGO system, an intelligent system for monitoring and rapid detection of fires in the cerrado region, which currently in South America has an area of 2,045,000 km 2 between Brazil, Bolivia and Paraguay. The SEMFOGO solution uses the massive capture and processing of video streams through a distributed and scalable system and applies a deep learning model that performs a grid classification on parts of the image. This work also presents a new training dataset specific to the cerrado region with smoke contour annotations. The experimental results compared the metrics of several models and show the practical feasibility of the proposed solution for real time fire detection.</abstract><pub>IEEE</pub><doi>10.1109/CLEI60451.2023.10346186</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2771-5752 |
ispartof | 2023 XLIX Latin American Computer Conference (CLEI), 2023, p.1-10 |
issn | 2771-5752 |
language | eng |
recordid | cdi_ieee_primary_10346186 |
source | IEEE Xplore All Conference Series |
subjects | Cerrado Dataset Deep Learning Fire Detection Forestry Measurement Real-time systems Smoke Dataset South America Streaming media Training Video surveillance Wildfire |
title | SEMFOGO: An Intelligent Fire Detection System for the Cerrado Biome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SEMFOGO:%20An%20Intelligent%20Fire%20Detection%20System%20for%20the%20Cerrado%20Biome&rft.btitle=2023%20XLIX%20Latin%20American%20Computer%20Conference%20(CLEI)&rft.au=Borges,%20Natalia%20O.&rft.date=2023-10-16&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.eissn=2771-5752&rft_id=info:doi/10.1109/CLEI60451.2023.10346186&rft.eisbn=9798350318876&rft_dat=%3Cieee_CHZPO%3E10346186%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i493-423fb83a470fb360cf686df181547d1eba523510cd590b88f2ef2625509db43c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10346186&rfr_iscdi=true |