Loading…

Fusion with EEG signals and Images for closed or open eyes detection using deep learning

EEG technology has been used in many areas and systems such as games and electric wheelchairs. Despite their maturity and the availability of low-cost easy-to-use EEG sensors, the risk of error command still remains. To tackle this problem, merging EEG sensor data with another sensor can be an inter...

Full description

Saved in:
Bibliographic Details
Main Authors: Zaway, Lassaad, Ben Amor, Nader, Ktari, Jalel, Jallouli, Mohamed, Chrifi-Alaoui, Larbi, Delahoche, Laurent
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Zaway, Lassaad
Ben Amor, Nader
Ktari, Jalel
Jallouli, Mohamed
Chrifi-Alaoui, Larbi
Delahoche, Laurent
description EEG technology has been used in many areas and systems such as games and electric wheelchairs. Despite their maturity and the availability of low-cost easy-to-use EEG sensors, the risk of error command still remains. To tackle this problem, merging EEG sensor data with another sensor can be an interesting solution. In this work, we address this hypothesis by merging EEG-based blink detection with facial images captured by cameras using a deep learning algorithm, enabling the simultaneous analysis of both neural and visual aspects of blinks. This fusion not only enhances detection accuracy but also allows for assessing blink-related cognitive workload and emotional responses in real time.
doi_str_mv 10.1109/DTTIS59576.2023.10348220
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10348220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10348220</ieee_id><sourcerecordid>10348220</sourcerecordid><originalsourceid>FETCH-LOGICAL-h153t-31c4743ffd3d2dcba48086a3a8752446f02be02cdbd22099f202a23f3c2d1a333</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQhVdBsNS-gRf7AqmzM_nZvZTa1kDBCyv0rmyys2mkTUo2In17V6xXM-cc5oMzQkgFc6XAPL1st-V7ZrIinyMgzRVQqhHhRsxMYTRlQCqP8a2YoCZMNNLuXsxC-ASIkQFAMxG71Vdo-05-t-NBLpdrGdqms8cgbedkebINB-n7QdbHPrCTcevP3Em-RN_xyPX4ex0ZXRM1n-WR7dBF9SDufOTw7Dqn4mO13C5ek83bulw8b5KDymhMSNVpkZL3jhy6urKpBp1bsrrIME1zD1gxYO0qF7sZ42NXi-SpRqcsEU3F4x-3Zeb9eWhPdrjs_59BP9jQU_o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fusion with EEG signals and Images for closed or open eyes detection using deep learning</title><source>IEEE Xplore All Conference Series</source><creator>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi-Alaoui, Larbi ; Delahoche, Laurent</creator><creatorcontrib>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi-Alaoui, Larbi ; Delahoche, Laurent</creatorcontrib><description>EEG technology has been used in many areas and systems such as games and electric wheelchairs. Despite their maturity and the availability of low-cost easy-to-use EEG sensors, the risk of error command still remains. To tackle this problem, merging EEG sensor data with another sensor can be an interesting solution. In this work, we address this hypothesis by merging EEG-based blink detection with facial images captured by cameras using a deep learning algorithm, enabling the simultaneous analysis of both neural and visual aspects of blinks. This fusion not only enhances detection accuracy but also allows for assessing blink-related cognitive workload and emotional responses in real time.</description><identifier>EISSN: 2832-823X</identifier><identifier>EISBN: 9798350316957</identifier><identifier>DOI: 10.1109/DTTIS59576.2023.10348220</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blink detection ; Convolutional Neural Network (CNN) ; Deep learning ; Electroencephalogram (EEG) ; Electroencephalography ; Games ; Long-Short Term Memory (LSTM) ; Merging ; Neural networks ; Visualization ; Wheelchairs</subject><ispartof>2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10348220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10348220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Ben Amor, Nader</creatorcontrib><creatorcontrib>Ktari, Jalel</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi-Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><title>Fusion with EEG signals and Images for closed or open eyes detection using deep learning</title><title>2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS)</title><addtitle>DTTIS</addtitle><description>EEG technology has been used in many areas and systems such as games and electric wheelchairs. Despite their maturity and the availability of low-cost easy-to-use EEG sensors, the risk of error command still remains. To tackle this problem, merging EEG sensor data with another sensor can be an interesting solution. In this work, we address this hypothesis by merging EEG-based blink detection with facial images captured by cameras using a deep learning algorithm, enabling the simultaneous analysis of both neural and visual aspects of blinks. This fusion not only enhances detection accuracy but also allows for assessing blink-related cognitive workload and emotional responses in real time.</description><subject>Blink detection</subject><subject>Convolutional Neural Network (CNN)</subject><subject>Deep learning</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Games</subject><subject>Long-Short Term Memory (LSTM)</subject><subject>Merging</subject><subject>Neural networks</subject><subject>Visualization</subject><subject>Wheelchairs</subject><issn>2832-823X</issn><isbn>9798350316957</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AQhVdBsNS-gRf7AqmzM_nZvZTa1kDBCyv0rmyys2mkTUo2In17V6xXM-cc5oMzQkgFc6XAPL1st-V7ZrIinyMgzRVQqhHhRsxMYTRlQCqP8a2YoCZMNNLuXsxC-ASIkQFAMxG71Vdo-05-t-NBLpdrGdqms8cgbedkebINB-n7QdbHPrCTcevP3Em-RN_xyPX4ex0ZXRM1n-WR7dBF9SDufOTw7Dqn4mO13C5ek83bulw8b5KDymhMSNVpkZL3jhy6urKpBp1bsrrIME1zD1gxYO0qF7sZ42NXi-SpRqcsEU3F4x-3Zeb9eWhPdrjs_59BP9jQU_o</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zaway, Lassaad</creator><creator>Ben Amor, Nader</creator><creator>Ktari, Jalel</creator><creator>Jallouli, Mohamed</creator><creator>Chrifi-Alaoui, Larbi</creator><creator>Delahoche, Laurent</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231101</creationdate><title>Fusion with EEG signals and Images for closed or open eyes detection using deep learning</title><author>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi-Alaoui, Larbi ; Delahoche, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h153t-31c4743ffd3d2dcba48086a3a8752446f02be02cdbd22099f202a23f3c2d1a333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blink detection</topic><topic>Convolutional Neural Network (CNN)</topic><topic>Deep learning</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Games</topic><topic>Long-Short Term Memory (LSTM)</topic><topic>Merging</topic><topic>Neural networks</topic><topic>Visualization</topic><topic>Wheelchairs</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Ben Amor, Nader</creatorcontrib><creatorcontrib>Ktari, Jalel</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi-Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaway, Lassaad</au><au>Ben Amor, Nader</au><au>Ktari, Jalel</au><au>Jallouli, Mohamed</au><au>Chrifi-Alaoui, Larbi</au><au>Delahoche, Laurent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fusion with EEG signals and Images for closed or open eyes detection using deep learning</atitle><btitle>2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS)</btitle><stitle>DTTIS</stitle><date>2023-11-01</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2832-823X</eissn><eisbn>9798350316957</eisbn><abstract>EEG technology has been used in many areas and systems such as games and electric wheelchairs. Despite their maturity and the availability of low-cost easy-to-use EEG sensors, the risk of error command still remains. To tackle this problem, merging EEG sensor data with another sensor can be an interesting solution. In this work, we address this hypothesis by merging EEG-based blink detection with facial images captured by cameras using a deep learning algorithm, enabling the simultaneous analysis of both neural and visual aspects of blinks. This fusion not only enhances detection accuracy but also allows for assessing blink-related cognitive workload and emotional responses in real time.</abstract><pub>IEEE</pub><doi>10.1109/DTTIS59576.2023.10348220</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2832-823X
ispartof 2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS), 2023, p.1-5
issn 2832-823X
language eng
recordid cdi_ieee_primary_10348220
source IEEE Xplore All Conference Series
subjects Blink detection
Convolutional Neural Network (CNN)
Deep learning
Electroencephalogram (EEG)
Electroencephalography
Games
Long-Short Term Memory (LSTM)
Merging
Neural networks
Visualization
Wheelchairs
title Fusion with EEG signals and Images for closed or open eyes detection using deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fusion%20with%20EEG%20signals%20and%20Images%20for%20closed%20or%20open%20eyes%20detection%20using%20deep%20learning&rft.btitle=2023%20IEEE%20International%20Conference%20on%20Design,%20Test%20and%20Technology%20of%20Integrated%20Systems%20(DTTIS)&rft.au=Zaway,%20Lassaad&rft.date=2023-11-01&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2832-823X&rft_id=info:doi/10.1109/DTTIS59576.2023.10348220&rft.eisbn=9798350316957&rft_dat=%3Cieee_CHZPO%3E10348220%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h153t-31c4743ffd3d2dcba48086a3a8752446f02be02cdbd22099f202a23f3c2d1a333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10348220&rfr_iscdi=true