Loading…

An accelerated digital CNN-UM (CASTLE) architecture by using the pipe-line technique

Different CNN-UM architecture implementations, analog and emulated digital, were developed. The emulated digital architecture (CASTLE) is accurate but slower than the analog CNN-UMs. It is generally disadvantageous especially if transient computing is critical. The operation speed of the emulated di...

Full description

Saved in:
Bibliographic Details
Main Authors: Hidvegi, T., Keresztes, P., Solgay, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 362
container_issue
container_start_page 355
container_title
container_volume
creator Hidvegi, T.
Keresztes, P.
Solgay, P.
description Different CNN-UM architecture implementations, analog and emulated digital, were developed. The emulated digital architecture (CASTLE) is accurate but slower than the analog CNN-UMs. It is generally disadvantageous especially if transient computing is critical. The operation speed of the emulated digital implementations, namely CASTLE, can be increased significantly using the pipeline technique. This solution is analyzed with respect to area, time, etc. These arithmetic cores were tested and simulated using a VIRTEX FPGA development system.
doi_str_mv 10.1109/CNNA.2002.1035070
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1035070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1035070</ieee_id><sourcerecordid>1035070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-51b2aa15b3883258f8186d438933692f52668731319e6cf3b611fe0548d5eb843</originalsourceid><addsrcrecordid>eNotj09rhDAUxAOl0LL1A5RecmwPbvPyTEyOIts_YLeHuucl6nNNsWI1HvbbV-gODHMY5gfD2D2ILYCwz_l-n22lEHILApVIxRWLbGqsAYmrIb1h0Tx_i1XSrov0lpXZwF1dU0-TC9Twxp98cD1fUfHhgz_m2VdZ7J64m-rOB6rDMhGvznyZ_XDioSM--pHi3g_E17ob_O9Cd-y6df1M0SU37PCyK_O3uPh8fc-zIvaQqhArqKRzoCo0BqUyrQGjmwSNRdRWtkpqbVIEBEu6brHSAC0JlZhGUWUS3LCHf64nouM4-R83nY-X7_gHlfZMNQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An accelerated digital CNN-UM (CASTLE) architecture by using the pipe-line technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hidvegi, T. ; Keresztes, P. ; Solgay, P.</creator><creatorcontrib>Hidvegi, T. ; Keresztes, P. ; Solgay, P.</creatorcontrib><description>Different CNN-UM architecture implementations, analog and emulated digital, were developed. The emulated digital architecture (CASTLE) is accurate but slower than the analog CNN-UMs. It is generally disadvantageous especially if transient computing is critical. The operation speed of the emulated digital implementations, namely CASTLE, can be increased significantly using the pipeline technique. This solution is analyzed with respect to area, time, etc. These arithmetic cores were tested and simulated using a VIRTEX FPGA development system.</description><identifier>ISBN: 9789812381217</identifier><identifier>ISBN: 981238121X</identifier><identifier>DOI: 10.1109/CNNA.2002.1035070</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Arithmetic ; Automation ; Cellular neural networks ; Computational modeling ; Computer architecture ; Field programmable gate arrays ; Image processing ; Registers ; System testing</subject><ispartof>Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications, 2002, p.355-362</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1035070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1035070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hidvegi, T.</creatorcontrib><creatorcontrib>Keresztes, P.</creatorcontrib><creatorcontrib>Solgay, P.</creatorcontrib><title>An accelerated digital CNN-UM (CASTLE) architecture by using the pipe-line technique</title><title>Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications</title><addtitle>CNNA</addtitle><description>Different CNN-UM architecture implementations, analog and emulated digital, were developed. The emulated digital architecture (CASTLE) is accurate but slower than the analog CNN-UMs. It is generally disadvantageous especially if transient computing is critical. The operation speed of the emulated digital implementations, namely CASTLE, can be increased significantly using the pipeline technique. This solution is analyzed with respect to area, time, etc. These arithmetic cores were tested and simulated using a VIRTEX FPGA development system.</description><subject>Acceleration</subject><subject>Arithmetic</subject><subject>Automation</subject><subject>Cellular neural networks</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Field programmable gate arrays</subject><subject>Image processing</subject><subject>Registers</subject><subject>System testing</subject><isbn>9789812381217</isbn><isbn>981238121X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09rhDAUxAOl0LL1A5RecmwPbvPyTEyOIts_YLeHuucl6nNNsWI1HvbbV-gODHMY5gfD2D2ILYCwz_l-n22lEHILApVIxRWLbGqsAYmrIb1h0Tx_i1XSrov0lpXZwF1dU0-TC9Twxp98cD1fUfHhgz_m2VdZ7J64m-rOB6rDMhGvznyZ_XDioSM--pHi3g_E17ob_O9Cd-y6df1M0SU37PCyK_O3uPh8fc-zIvaQqhArqKRzoCo0BqUyrQGjmwSNRdRWtkpqbVIEBEu6brHSAC0JlZhGUWUS3LCHf64nouM4-R83nY-X7_gHlfZMNQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Hidvegi, T.</creator><creator>Keresztes, P.</creator><creator>Solgay, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>An accelerated digital CNN-UM (CASTLE) architecture by using the pipe-line technique</title><author>Hidvegi, T. ; Keresztes, P. ; Solgay, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-51b2aa15b3883258f8186d438933692f52668731319e6cf3b611fe0548d5eb843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acceleration</topic><topic>Arithmetic</topic><topic>Automation</topic><topic>Cellular neural networks</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Field programmable gate arrays</topic><topic>Image processing</topic><topic>Registers</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hidvegi, T.</creatorcontrib><creatorcontrib>Keresztes, P.</creatorcontrib><creatorcontrib>Solgay, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hidvegi, T.</au><au>Keresztes, P.</au><au>Solgay, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An accelerated digital CNN-UM (CASTLE) architecture by using the pipe-line technique</atitle><btitle>Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications</btitle><stitle>CNNA</stitle><date>2002</date><risdate>2002</risdate><spage>355</spage><epage>362</epage><pages>355-362</pages><isbn>9789812381217</isbn><isbn>981238121X</isbn><abstract>Different CNN-UM architecture implementations, analog and emulated digital, were developed. The emulated digital architecture (CASTLE) is accurate but slower than the analog CNN-UMs. It is generally disadvantageous especially if transient computing is critical. The operation speed of the emulated digital implementations, namely CASTLE, can be increased significantly using the pipeline technique. This solution is analyzed with respect to area, time, etc. These arithmetic cores were tested and simulated using a VIRTEX FPGA development system.</abstract><pub>IEEE</pub><doi>10.1109/CNNA.2002.1035070</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9789812381217
ispartof Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications, 2002, p.355-362
issn
language eng
recordid cdi_ieee_primary_1035070
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Arithmetic
Automation
Cellular neural networks
Computational modeling
Computer architecture
Field programmable gate arrays
Image processing
Registers
System testing
title An accelerated digital CNN-UM (CASTLE) architecture by using the pipe-line technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20accelerated%20digital%20CNN-UM%20(CASTLE)%20architecture%20by%20using%20the%20pipe-line%20technique&rft.btitle=Proceedings%20of%20the%202002%207th%20IEEE%20International%20Workshop%20on%20Cellular%20Neural%20Networks%20and%20Their%20Applications&rft.au=Hidvegi,%20T.&rft.date=2002&rft.spage=355&rft.epage=362&rft.pages=355-362&rft.isbn=9789812381217&rft.isbn_list=981238121X&rft_id=info:doi/10.1109/CNNA.2002.1035070&rft_dat=%3Cieee_6IE%3E1035070%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-51b2aa15b3883258f8186d438933692f52668731319e6cf3b611fe0548d5eb843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1035070&rfr_iscdi=true