Loading…

2D Cross-View Object Segmentation and Perceptual Grouping in Computer-Aided Design Drawings

This paper introduces our methods in creating a comprehensive evaluation resource for assessing the capabilities of algorithms aimed at segmenting and perceptually grouping 2D mechanical technical drawings. Our dataset encompasses a diverse collection of such drawings, accompanied by semi-automated...

Full description

Saved in:
Bibliographic Details
Main Authors: Besbes, Mohamed Dhia Elhak, Vahidi Ferdousi, Zahra, Tabia, Hedi, Fradi, Mouna
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1746
container_issue
container_start_page 1737
container_title
container_volume
creator Besbes, Mohamed Dhia Elhak
Vahidi Ferdousi, Zahra
Tabia, Hedi
Fradi, Mouna
description This paper introduces our methods in creating a comprehensive evaluation resource for assessing the capabilities of algorithms aimed at segmenting and perceptually grouping 2D mechanical technical drawings. Our dataset encompasses a diverse collection of such drawings, accompanied by semi-automated annotations of segments and groups. These annotations were reviewed by domain experts, following detailed guidelines to ensure both consistency and top-notch quality. The dataset is intended to serve as an invaluable asset for researchers dedicated to advancing techniques that enhance the comprehension and interpretation of 2D mechanical drawings.
doi_str_mv 10.1109/ICCVW60793.2023.00190
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10350861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10350861</ieee_id><sourcerecordid>10350861</sourcerecordid><originalsourceid>FETCH-LOGICAL-h238t-aae8f8201ee2d85e34cc9f7207713b50359b15181a043a4f690a94be4db961e43</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMgOObeQCEv0HmSkzbJ5eh0DgYT1HnhxUjb05mxtSVpGb69Bb36br7vh5-xBwFzIcA-rvN895mBtjiXIHEOICxcsZnV1mAKCFopvGYTqTQm1ip1y2YxHmH0MpFahAn7kkuehzbGZOfpwrfFkcqev9HhTE3vet823DUVf6VQUtcP7sRXoR063xy4b3jenruhp5AsfEUVX1L0h4Yvg7uMQrxjN7U7RZr9c8o-np_e85dks12t88Um-ZZo-sQ5MrWRIIhkZVJCVZa21hK0FliMN1JbiFQY4UChU3VmwVlVkKoKmwlSOGX3f7ueiPZd8GcXfvZiDMFkAn8B93xT_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>2D Cross-View Object Segmentation and Perceptual Grouping in Computer-Aided Design Drawings</title><source>IEEE Xplore All Conference Series</source><creator>Besbes, Mohamed Dhia Elhak ; Vahidi Ferdousi, Zahra ; Tabia, Hedi ; Fradi, Mouna</creator><creatorcontrib>Besbes, Mohamed Dhia Elhak ; Vahidi Ferdousi, Zahra ; Tabia, Hedi ; Fradi, Mouna</creatorcontrib><description>This paper introduces our methods in creating a comprehensive evaluation resource for assessing the capabilities of algorithms aimed at segmenting and perceptually grouping 2D mechanical technical drawings. Our dataset encompasses a diverse collection of such drawings, accompanied by semi-automated annotations of segments and groups. These annotations were reviewed by domain experts, following detailed guidelines to ensure both consistency and top-notch quality. The dataset is intended to serve as an invaluable asset for researchers dedicated to advancing techniques that enhance the comprehension and interpretation of 2D mechanical drawings.</description><identifier>EISSN: 2473-9944</identifier><identifier>EISBN: 9798350307443</identifier><identifier>DOI: 10.1109/ICCVW60793.2023.00190</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annotations ; Complexity theory ; Computer vision ; Conferences ; Design automation ; Object segmentation ; Training</subject><ispartof>2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2023, p.1737-1746</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10350861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10350861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Besbes, Mohamed Dhia Elhak</creatorcontrib><creatorcontrib>Vahidi Ferdousi, Zahra</creatorcontrib><creatorcontrib>Tabia, Hedi</creatorcontrib><creatorcontrib>Fradi, Mouna</creatorcontrib><title>2D Cross-View Object Segmentation and Perceptual Grouping in Computer-Aided Design Drawings</title><title>2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)</title><addtitle>ICCVW</addtitle><description>This paper introduces our methods in creating a comprehensive evaluation resource for assessing the capabilities of algorithms aimed at segmenting and perceptually grouping 2D mechanical technical drawings. Our dataset encompasses a diverse collection of such drawings, accompanied by semi-automated annotations of segments and groups. These annotations were reviewed by domain experts, following detailed guidelines to ensure both consistency and top-notch quality. The dataset is intended to serve as an invaluable asset for researchers dedicated to advancing techniques that enhance the comprehension and interpretation of 2D mechanical drawings.</description><subject>Annotations</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Design automation</subject><subject>Object segmentation</subject><subject>Training</subject><issn>2473-9944</issn><isbn>9798350307443</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMgOObeQCEv0HmSkzbJ5eh0DgYT1HnhxUjb05mxtSVpGb69Bb36br7vh5-xBwFzIcA-rvN895mBtjiXIHEOICxcsZnV1mAKCFopvGYTqTQm1ip1y2YxHmH0MpFahAn7kkuehzbGZOfpwrfFkcqev9HhTE3vet823DUVf6VQUtcP7sRXoR063xy4b3jenruhp5AsfEUVX1L0h4Yvg7uMQrxjN7U7RZr9c8o-np_e85dks12t88Um-ZZo-sQ5MrWRIIhkZVJCVZa21hK0FliMN1JbiFQY4UChU3VmwVlVkKoKmwlSOGX3f7ueiPZd8GcXfvZiDMFkAn8B93xT_Q</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Besbes, Mohamed Dhia Elhak</creator><creator>Vahidi Ferdousi, Zahra</creator><creator>Tabia, Hedi</creator><creator>Fradi, Mouna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231002</creationdate><title>2D Cross-View Object Segmentation and Perceptual Grouping in Computer-Aided Design Drawings</title><author>Besbes, Mohamed Dhia Elhak ; Vahidi Ferdousi, Zahra ; Tabia, Hedi ; Fradi, Mouna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h238t-aae8f8201ee2d85e34cc9f7207713b50359b15181a043a4f690a94be4db961e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Design automation</topic><topic>Object segmentation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Besbes, Mohamed Dhia Elhak</creatorcontrib><creatorcontrib>Vahidi Ferdousi, Zahra</creatorcontrib><creatorcontrib>Tabia, Hedi</creatorcontrib><creatorcontrib>Fradi, Mouna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Besbes, Mohamed Dhia Elhak</au><au>Vahidi Ferdousi, Zahra</au><au>Tabia, Hedi</au><au>Fradi, Mouna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>2D Cross-View Object Segmentation and Perceptual Grouping in Computer-Aided Design Drawings</atitle><btitle>2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)</btitle><stitle>ICCVW</stitle><date>2023-10-02</date><risdate>2023</risdate><spage>1737</spage><epage>1746</epage><pages>1737-1746</pages><eissn>2473-9944</eissn><eisbn>9798350307443</eisbn><coden>IEEPAD</coden><abstract>This paper introduces our methods in creating a comprehensive evaluation resource for assessing the capabilities of algorithms aimed at segmenting and perceptually grouping 2D mechanical technical drawings. Our dataset encompasses a diverse collection of such drawings, accompanied by semi-automated annotations of segments and groups. These annotations were reviewed by domain experts, following detailed guidelines to ensure both consistency and top-notch quality. The dataset is intended to serve as an invaluable asset for researchers dedicated to advancing techniques that enhance the comprehension and interpretation of 2D mechanical drawings.</abstract><pub>IEEE</pub><doi>10.1109/ICCVW60793.2023.00190</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2473-9944
ispartof 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2023, p.1737-1746
issn 2473-9944
language eng
recordid cdi_ieee_primary_10350861
source IEEE Xplore All Conference Series
subjects Annotations
Complexity theory
Computer vision
Conferences
Design automation
Object segmentation
Training
title 2D Cross-View Object Segmentation and Perceptual Grouping in Computer-Aided Design Drawings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=2D%20Cross-View%20Object%20Segmentation%20and%20Perceptual%20Grouping%20in%20Computer-Aided%20Design%20Drawings&rft.btitle=2023%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20Workshops%20(ICCVW)&rft.au=Besbes,%20Mohamed%20Dhia%20Elhak&rft.date=2023-10-02&rft.spage=1737&rft.epage=1746&rft.pages=1737-1746&rft.eissn=2473-9944&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCVW60793.2023.00190&rft.eisbn=9798350307443&rft_dat=%3Cieee_CHZPO%3E10350861%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h238t-aae8f8201ee2d85e34cc9f7207713b50359b15181a043a4f690a94be4db961e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10350861&rfr_iscdi=true