Loading…
A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications
With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collec...
Saved in:
Published in: | IEEE transactions on big data 2024-04, Vol.10 (2), p.174-193 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463 |
container_end_page | 193 |
container_issue | 2 |
container_start_page | 174 |
container_title | IEEE transactions on big data |
container_volume | 10 |
creator | Liang, Huanghuang Zhang, Zheng Hu, Chuang Gong, Yili Cheng, Dazhao |
description | With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments. |
doi_str_mv | 10.1109/TBDATA.2023.3342619 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10356753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10356753</ieee_id><sourcerecordid>2956392874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhEVpoSHNL2gPgl7jVA9bsnpzHn1ASkPjno0iy8HBtlxJKfjf18Y59DTLMjPsfgDcY7TAGImndLlO0mRBEKELSkPCsLgCE0I5CQgS7HqYKQk4F-gWzJw7IYQwQ4gKMgE-gfuz_dUdNA3ct9KXJkh13RorK7gsj3AtvYRJI6vOl8rBjTKuc17Xz_BLO3O2SsMP2cijrnXj53BnjdLOlc0R7irpC2PrOZRNDpO2rUo19DfuDtwUsnJ6dtEp-H7ZpKu3YPv5-r5KtoEiYeyD-BBRHBY8imUvSkVU5irkucAHxHOJ-g3hVLBcRKHCDOdKsRgV_EAUw3HI6BQ8jr2tNT9n7Xx26i_uf3EZERHrAcQ87F10dClrnLO6yFpb1tJ2GUbZQDgbCWcD4exCuE89jKlSa_0vQSPGI0r_AO04d8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956392874</pqid></control><display><type>article</type><title>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liang, Huanghuang ; Zhang, Zheng ; Hu, Chuang ; Gong, Yili ; Cheng, Dazhao</creator><creatorcontrib>Liang, Huanghuang ; Zhang, Zheng ; Hu, Chuang ; Gong, Yili ; Cheng, Dazhao</creatorcontrib><description>With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.</description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2023.3342619</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial intelligence framework ; Big Data ; Big Data system ; Cloud computing ; cloud platform ; Data analysis ; Data management ; Data processing ; database management system ; Ecosystems ; geographic information system ; Geographic information systems ; Internet of Things ; Mathematical analysis ; Modules ; Resource management ; spatio-temporal Big Data ; Spatiotemporal data</subject><ispartof>IEEE transactions on big data, 2024-04, Vol.10 (2), p.174-193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463</cites><orcidid>0000-0003-2847-0285 ; 0000-0002-9051-3242 ; 0000-0001-6599-9976 ; 0000-0003-2869-7623 ; 0009-0008-2583-127X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10356753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Liang, Huanghuang</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Hu, Chuang</creatorcontrib><creatorcontrib>Gong, Yili</creatorcontrib><creatorcontrib>Cheng, Dazhao</creatorcontrib><title>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description>With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence framework</subject><subject>Big Data</subject><subject>Big Data system</subject><subject>Cloud computing</subject><subject>cloud platform</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data processing</subject><subject>database management system</subject><subject>Ecosystems</subject><subject>geographic information system</subject><subject>Geographic information systems</subject><subject>Internet of Things</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Resource management</subject><subject>spatio-temporal Big Data</subject><subject>Spatiotemporal data</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrwzAQhEVpoSHNL2gPgl7jVA9bsnpzHn1ASkPjno0iy8HBtlxJKfjf18Y59DTLMjPsfgDcY7TAGImndLlO0mRBEKELSkPCsLgCE0I5CQgS7HqYKQk4F-gWzJw7IYQwQ4gKMgE-gfuz_dUdNA3ct9KXJkh13RorK7gsj3AtvYRJI6vOl8rBjTKuc17Xz_BLO3O2SsMP2cijrnXj53BnjdLOlc0R7irpC2PrOZRNDpO2rUo19DfuDtwUsnJ6dtEp-H7ZpKu3YPv5-r5KtoEiYeyD-BBRHBY8imUvSkVU5irkucAHxHOJ-g3hVLBcRKHCDOdKsRgV_EAUw3HI6BQ8jr2tNT9n7Xx26i_uf3EZERHrAcQ87F10dClrnLO6yFpb1tJ2GUbZQDgbCWcD4exCuE89jKlSa_0vQSPGI0r_AO04d8M</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liang, Huanghuang</creator><creator>Zhang, Zheng</creator><creator>Hu, Chuang</creator><creator>Gong, Yili</creator><creator>Cheng, Dazhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2847-0285</orcidid><orcidid>https://orcid.org/0000-0002-9051-3242</orcidid><orcidid>https://orcid.org/0000-0001-6599-9976</orcidid><orcidid>https://orcid.org/0000-0003-2869-7623</orcidid><orcidid>https://orcid.org/0009-0008-2583-127X</orcidid></search><sort><creationdate>20240401</creationdate><title>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</title><author>Liang, Huanghuang ; Zhang, Zheng ; Hu, Chuang ; Gong, Yili ; Cheng, Dazhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence framework</topic><topic>Big Data</topic><topic>Big Data system</topic><topic>Cloud computing</topic><topic>cloud platform</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data processing</topic><topic>database management system</topic><topic>Ecosystems</topic><topic>geographic information system</topic><topic>Geographic information systems</topic><topic>Internet of Things</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Resource management</topic><topic>spatio-temporal Big Data</topic><topic>Spatiotemporal data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Huanghuang</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Hu, Chuang</creatorcontrib><creatorcontrib>Gong, Yili</creatorcontrib><creatorcontrib>Cheng, Dazhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Huanghuang</au><au>Zhang, Zheng</au><au>Hu, Chuang</au><au>Gong, Yili</au><au>Cheng, Dazhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>10</volume><issue>2</issue><spage>174</spage><epage>193</epage><pages>174-193</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract>With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBDATA.2023.3342619</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2847-0285</orcidid><orcidid>https://orcid.org/0000-0002-9051-3242</orcidid><orcidid>https://orcid.org/0000-0001-6599-9976</orcidid><orcidid>https://orcid.org/0000-0003-2869-7623</orcidid><orcidid>https://orcid.org/0009-0008-2583-127X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2332-7790 |
ispartof | IEEE transactions on big data, 2024-04, Vol.10 (2), p.174-193 |
issn | 2332-7790 2372-2096 |
language | eng |
recordid | cdi_ieee_primary_10356753 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Artificial intelligence Artificial intelligence framework Big Data Big Data system Cloud computing cloud platform Data analysis Data management Data processing database management system Ecosystems geographic information system Geographic information systems Internet of Things Mathematical analysis Modules Resource management spatio-temporal Big Data Spatiotemporal data |
title | A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Spatio-Temporal%20Big%20Data%20Analytics%20Ecosystem:%20Resource%20Management,%20Processing%20Platform,%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Liang,%20Huanghuang&rft.date=2024-04-01&rft.volume=10&rft.issue=2&rft.spage=174&rft.epage=193&rft.pages=174-193&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2023.3342619&rft_dat=%3Cproquest_ieee_%3E2956392874%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956392874&rft_id=info:pmid/&rft_ieee_id=10356753&rfr_iscdi=true |