Loading…

A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications

With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on big data 2024-04, Vol.10 (2), p.174-193
Main Authors: Liang, Huanghuang, Zhang, Zheng, Hu, Chuang, Gong, Yili, Cheng, Dazhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463
container_end_page 193
container_issue 2
container_start_page 174
container_title IEEE transactions on big data
container_volume 10
creator Liang, Huanghuang
Zhang, Zheng
Hu, Chuang
Gong, Yili
Cheng, Dazhao
description With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.
doi_str_mv 10.1109/TBDATA.2023.3342619
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10356753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10356753</ieee_id><sourcerecordid>2956392874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhEVpoSHNL2gPgl7jVA9bsnpzHn1ASkPjno0iy8HBtlxJKfjf18Y59DTLMjPsfgDcY7TAGImndLlO0mRBEKELSkPCsLgCE0I5CQgS7HqYKQk4F-gWzJw7IYQwQ4gKMgE-gfuz_dUdNA3ct9KXJkh13RorK7gsj3AtvYRJI6vOl8rBjTKuc17Xz_BLO3O2SsMP2cijrnXj53BnjdLOlc0R7irpC2PrOZRNDpO2rUo19DfuDtwUsnJ6dtEp-H7ZpKu3YPv5-r5KtoEiYeyD-BBRHBY8imUvSkVU5irkucAHxHOJ-g3hVLBcRKHCDOdKsRgV_EAUw3HI6BQ8jr2tNT9n7Xx26i_uf3EZERHrAcQ87F10dClrnLO6yFpb1tJ2GUbZQDgbCWcD4exCuE89jKlSa_0vQSPGI0r_AO04d8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956392874</pqid></control><display><type>article</type><title>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liang, Huanghuang ; Zhang, Zheng ; Hu, Chuang ; Gong, Yili ; Cheng, Dazhao</creator><creatorcontrib>Liang, Huanghuang ; Zhang, Zheng ; Hu, Chuang ; Gong, Yili ; Cheng, Dazhao</creatorcontrib><description>With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.</description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2023.3342619</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial intelligence framework ; Big Data ; Big Data system ; Cloud computing ; cloud platform ; Data analysis ; Data management ; Data processing ; database management system ; Ecosystems ; geographic information system ; Geographic information systems ; Internet of Things ; Mathematical analysis ; Modules ; Resource management ; spatio-temporal Big Data ; Spatiotemporal data</subject><ispartof>IEEE transactions on big data, 2024-04, Vol.10 (2), p.174-193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463</cites><orcidid>0000-0003-2847-0285 ; 0000-0002-9051-3242 ; 0000-0001-6599-9976 ; 0000-0003-2869-7623 ; 0009-0008-2583-127X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10356753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Liang, Huanghuang</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Hu, Chuang</creatorcontrib><creatorcontrib>Gong, Yili</creatorcontrib><creatorcontrib>Cheng, Dazhao</creatorcontrib><title>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description>With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence framework</subject><subject>Big Data</subject><subject>Big Data system</subject><subject>Cloud computing</subject><subject>cloud platform</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data processing</subject><subject>database management system</subject><subject>Ecosystems</subject><subject>geographic information system</subject><subject>Geographic information systems</subject><subject>Internet of Things</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Resource management</subject><subject>spatio-temporal Big Data</subject><subject>Spatiotemporal data</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrwzAQhEVpoSHNL2gPgl7jVA9bsnpzHn1ASkPjno0iy8HBtlxJKfjf18Y59DTLMjPsfgDcY7TAGImndLlO0mRBEKELSkPCsLgCE0I5CQgS7HqYKQk4F-gWzJw7IYQwQ4gKMgE-gfuz_dUdNA3ct9KXJkh13RorK7gsj3AtvYRJI6vOl8rBjTKuc17Xz_BLO3O2SsMP2cijrnXj53BnjdLOlc0R7irpC2PrOZRNDpO2rUo19DfuDtwUsnJ6dtEp-H7ZpKu3YPv5-r5KtoEiYeyD-BBRHBY8imUvSkVU5irkucAHxHOJ-g3hVLBcRKHCDOdKsRgV_EAUw3HI6BQ8jr2tNT9n7Xx26i_uf3EZERHrAcQ87F10dClrnLO6yFpb1tJ2GUbZQDgbCWcD4exCuE89jKlSa_0vQSPGI0r_AO04d8M</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liang, Huanghuang</creator><creator>Zhang, Zheng</creator><creator>Hu, Chuang</creator><creator>Gong, Yili</creator><creator>Cheng, Dazhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2847-0285</orcidid><orcidid>https://orcid.org/0000-0002-9051-3242</orcidid><orcidid>https://orcid.org/0000-0001-6599-9976</orcidid><orcidid>https://orcid.org/0000-0003-2869-7623</orcidid><orcidid>https://orcid.org/0009-0008-2583-127X</orcidid></search><sort><creationdate>20240401</creationdate><title>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</title><author>Liang, Huanghuang ; Zhang, Zheng ; Hu, Chuang ; Gong, Yili ; Cheng, Dazhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence framework</topic><topic>Big Data</topic><topic>Big Data system</topic><topic>Cloud computing</topic><topic>cloud platform</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data processing</topic><topic>database management system</topic><topic>Ecosystems</topic><topic>geographic information system</topic><topic>Geographic information systems</topic><topic>Internet of Things</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Resource management</topic><topic>spatio-temporal Big Data</topic><topic>Spatiotemporal data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Huanghuang</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Hu, Chuang</creatorcontrib><creatorcontrib>Gong, Yili</creatorcontrib><creatorcontrib>Cheng, Dazhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Huanghuang</au><au>Zhang, Zheng</au><au>Hu, Chuang</au><au>Gong, Yili</au><au>Cheng, Dazhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>10</volume><issue>2</issue><spage>174</spage><epage>193</epage><pages>174-193</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract>With the rapid evolution of the Internet, Internet of Things (IoT), and geographic information systems (GIS), spatio-temporal Big Data (STBD) is experiencing exponential growth, marking the onset of the STBD era. Recent studies have concentrated on developing algorithms and techniques for the collection, management, storage, processing, analysis, and visualization of STBD. Researchers have made significant advancements by enhancing STBD handling techniques, creating novel systems, and integrating spatio-temporal support into existing systems. However, these studies often neglect resource management and system optimization, crucial factors for enhancing the efficiency of STBD processing and applications. Additionally, the transition of STBD to the innovative Cloud-Edge-End unified computing system needs to be noticed. In this survey, we comprehensively explore the entire ecosystem of STBD analytics systems. We delineate the STBD analytics ecosystem and categorize the technologies used to process GIS data into five modules: STBD, computation resources, processing platform, resource management, and applications. Specifically, we subdivide STBD and its applications into geoscience-oriented and human-social activity-oriented. Within the processing platform module, we further categorize it into the data management layer (DBMS-GIS), data processing layer (BigData-GIS), data analysis layer (AI-GIS), and cloud native layer (Cloud-GIS). The resource management module and each layer in the processing platform are classified into three categories: task-oriented, resource-oriented, and cloud-based. Finally, we propose research agendas for potential future developments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBDATA.2023.3342619</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2847-0285</orcidid><orcidid>https://orcid.org/0000-0002-9051-3242</orcidid><orcidid>https://orcid.org/0000-0001-6599-9976</orcidid><orcidid>https://orcid.org/0000-0003-2869-7623</orcidid><orcidid>https://orcid.org/0009-0008-2583-127X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2332-7790
ispartof IEEE transactions on big data, 2024-04, Vol.10 (2), p.174-193
issn 2332-7790
2372-2096
language eng
recordid cdi_ieee_primary_10356753
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial intelligence
Artificial intelligence framework
Big Data
Big Data system
Cloud computing
cloud platform
Data analysis
Data management
Data processing
database management system
Ecosystems
geographic information system
Geographic information systems
Internet of Things
Mathematical analysis
Modules
Resource management
spatio-temporal Big Data
Spatiotemporal data
title A Survey on Spatio-Temporal Big Data Analytics Ecosystem: Resource Management, Processing Platform, and Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Spatio-Temporal%20Big%20Data%20Analytics%20Ecosystem:%20Resource%20Management,%20Processing%20Platform,%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Liang,%20Huanghuang&rft.date=2024-04-01&rft.volume=10&rft.issue=2&rft.spage=174&rft.epage=193&rft.pages=174-193&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2023.3342619&rft_dat=%3Cproquest_ieee_%3E2956392874%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-8b5314f758a14fcc53adc47d91b07da0cc527396d954c161dcc680f7b2c618463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956392874&rft_id=info:pmid/&rft_ieee_id=10356753&rfr_iscdi=true