Loading…
A fast method for training support vector machines with a very large set of linear features
Current systems for object detection often use support vector machines (SVM) as the basic classification algorithm. A rather common case is to compute a small set of linear features and then train the classifier on these features. We present a fast method to train and evaluate SVM with many linear f...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 312 vol.1 |
container_issue | |
container_start_page | 309 |
container_title | |
container_volume | 1 |
creator | Maydt, J. Lienhart, R. |
description | Current systems for object detection often use support vector machines (SVM) as the basic classification algorithm. A rather common case is to compute a small set of linear features and then train the classifier on these features. We present a fast method to train and evaluate SVM with many linear features and show results for face detection using a set of 210400 features. The resulting classifier is both more accurate and faster than a classifier trained on raw pixel features, which total up only to 576 features in our case. |
doi_str_mv | 10.1109/ICME.2002.1035780 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1035780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1035780</ieee_id><sourcerecordid>1035780</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5e47fb78180b97190d745b7e136fb5d0833f65dee64617372df2672ad53e451f3</originalsourceid><addsrcrecordid>eNotkM9KAzEYxAMiKHUfQLx8L7Brskk2u8eyVC20eNGTh5JtvnQj-48kVfr2BuwwMPAbmMMQ8showRhtnrftflOUlJYFo1yqmt6QrEmRzBWnQtyRLIRvmsQbKWt6T77WYHWIMGLsZwN29hC9dpObThDOyzL7CD94jImP-ti7CQP8utiDTthfYND-hBAwwmxhSLX2YFHHs8fwQG6tHgJm11yRz5fNR_uW795ft-16lzumZMwlCmU7VbOado1iDTVKyE4h45XtpKE157aSBrESFVNclcaWlSq1kRyFZJavyNP_rkPEw-LdqP3lcL2A_wG4MVFg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast method for training support vector machines with a very large set of linear features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maydt, J. ; Lienhart, R.</creator><creatorcontrib>Maydt, J. ; Lienhart, R.</creatorcontrib><description>Current systems for object detection often use support vector machines (SVM) as the basic classification algorithm. A rather common case is to compute a small set of linear features and then train the classifier on these features. We present a fast method to train and evaluate SVM with many linear features and show results for face detection using a set of 210400 features. The resulting classifier is both more accurate and faster than a classifier trained on raw pixel features, which total up only to 576 features in our case.</description><identifier>ISBN: 9780780373044</identifier><identifier>ISBN: 0780373049</identifier><identifier>DOI: 10.1109/ICME.2002.1035780</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Face detection ; Fourier transforms ; Kernel ; Object detection ; Principal component analysis ; Runtime ; Support vector machine classification ; Support vector machines ; Wavelet domain</subject><ispartof>Proceedings. IEEE International Conference on Multimedia and Expo, 2002, Vol.1, p.309-312 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1035780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1035780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maydt, J.</creatorcontrib><creatorcontrib>Lienhart, R.</creatorcontrib><title>A fast method for training support vector machines with a very large set of linear features</title><title>Proceedings. IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>Current systems for object detection often use support vector machines (SVM) as the basic classification algorithm. A rather common case is to compute a small set of linear features and then train the classifier on these features. We present a fast method to train and evaluate SVM with many linear features and show results for face detection using a set of 210400 features. The resulting classifier is both more accurate and faster than a classifier trained on raw pixel features, which total up only to 576 features in our case.</description><subject>Classification algorithms</subject><subject>Face detection</subject><subject>Fourier transforms</subject><subject>Kernel</subject><subject>Object detection</subject><subject>Principal component analysis</subject><subject>Runtime</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Wavelet domain</subject><isbn>9780780373044</isbn><isbn>0780373049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9KAzEYxAMiKHUfQLx8L7Brskk2u8eyVC20eNGTh5JtvnQj-48kVfr2BuwwMPAbmMMQ8showRhtnrftflOUlJYFo1yqmt6QrEmRzBWnQtyRLIRvmsQbKWt6T77WYHWIMGLsZwN29hC9dpObThDOyzL7CD94jImP-ti7CQP8utiDTthfYND-hBAwwmxhSLX2YFHHs8fwQG6tHgJm11yRz5fNR_uW795ft-16lzumZMwlCmU7VbOado1iDTVKyE4h45XtpKE157aSBrESFVNclcaWlSq1kRyFZJavyNP_rkPEw-LdqP3lcL2A_wG4MVFg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Maydt, J.</creator><creator>Lienhart, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>A fast method for training support vector machines with a very large set of linear features</title><author>Maydt, J. ; Lienhart, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5e47fb78180b97190d745b7e136fb5d0833f65dee64617372df2672ad53e451f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Classification algorithms</topic><topic>Face detection</topic><topic>Fourier transforms</topic><topic>Kernel</topic><topic>Object detection</topic><topic>Principal component analysis</topic><topic>Runtime</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Wavelet domain</topic><toplevel>online_resources</toplevel><creatorcontrib>Maydt, J.</creatorcontrib><creatorcontrib>Lienhart, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maydt, J.</au><au>Lienhart, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast method for training support vector machines with a very large set of linear features</atitle><btitle>Proceedings. IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>309</spage><epage>312 vol.1</epage><pages>309-312 vol.1</pages><isbn>9780780373044</isbn><isbn>0780373049</isbn><abstract>Current systems for object detection often use support vector machines (SVM) as the basic classification algorithm. A rather common case is to compute a small set of linear features and then train the classifier on these features. We present a fast method to train and evaluate SVM with many linear features and show results for face detection using a set of 210400 features. The resulting classifier is both more accurate and faster than a classifier trained on raw pixel features, which total up only to 576 features in our case.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2002.1035780</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780373044 |
ispartof | Proceedings. IEEE International Conference on Multimedia and Expo, 2002, Vol.1, p.309-312 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1035780 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Face detection Fourier transforms Kernel Object detection Principal component analysis Runtime Support vector machine classification Support vector machines Wavelet domain |
title | A fast method for training support vector machines with a very large set of linear features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20method%20for%20training%20support%20vector%20machines%20with%20a%20very%20large%20set%20of%20linear%20features&rft.btitle=Proceedings.%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Maydt,%20J.&rft.date=2002&rft.volume=1&rft.spage=309&rft.epage=312%20vol.1&rft.pages=309-312%20vol.1&rft.isbn=9780780373044&rft.isbn_list=0780373049&rft_id=info:doi/10.1109/ICME.2002.1035780&rft_dat=%3Cieee_6IE%3E1035780%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5e47fb78180b97190d745b7e136fb5d0833f65dee64617372df2672ad53e451f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1035780&rfr_iscdi=true |