Loading…

Hybrid Multi-Strategy Improvements for The Aquila Optimizer

Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the locat...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Yinzhao, Sun, Wei, Hou, Jun, Li, Qianmu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 0556
container_issue
container_start_page 0549
container_title
container_volume
creator Zhang, Yinzhao
Sun, Wei
Hou, Jun
Li, Qianmu
description Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.
doi_str_mv 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10361401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10361401</ieee_id><sourcerecordid>10361401</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-9ad241cb99238f1bd5b1ae884d354cc76a5e30822064543b77d592a26195319b3</originalsourceid><addsrcrecordid>eNo1j91KwzAYQKMgOGbfwIu-QNfvy5c0CV7VTrfBZMLm9UjXTCOtm2km1KdX_Lk6FwcOHMZyhAkimHxarqv80VeHLq9upz8YpFGIEw6cJghUoAA8Y4lRRpMEAlEAP2cjrklloARcsqTvXwG-FRjUNGI386EOvkkfTm302ToGG93zkC66Yzh8uM69xT7dH0K6eXFp-X7yrU1Xx-g7_-nCFbvY27Z3yR_H7On-blPNs-VqtqjKZeYRTcyMbbjAXW0MJ73HupE1Wqe1aEiK3U4VVjoCzTkUQgqqlWqk4ZYXaCShqWnMrn-73jm3PQbf2TBs_3_pC6P1TaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Yinzhao ; Sun, Wei ; Hou, Jun ; Li, Qianmu</creator><creatorcontrib>Zhang, Yinzhao ; Sun, Wei ; Hou, Jun ; Li, Qianmu</creatorcontrib><description>Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.</description><identifier>EISSN: 2837-0740</identifier><identifier>EISBN: 9798350304602</identifier><identifier>DOI: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aquila optimizer ; Benchmark testing ; Big Data ; Convergence ; intrusion detection ; Optimization ; Particle swarm optimization ; Search problems ; swarm intelligence algorithm ; Switches</subject><ispartof>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2023, p.0549-0556</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10361401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10361401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yinzhao</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Li, Qianmu</creatorcontrib><title>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</title><title>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)</title><addtitle>DASC/PICOM/CBDCOM/CYBERSCITECH</addtitle><description>Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.</description><subject>Aquila optimizer</subject><subject>Benchmark testing</subject><subject>Big Data</subject><subject>Convergence</subject><subject>intrusion detection</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Search problems</subject><subject>swarm intelligence algorithm</subject><subject>Switches</subject><issn>2837-0740</issn><isbn>9798350304602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j91KwzAYQKMgOGbfwIu-QNfvy5c0CV7VTrfBZMLm9UjXTCOtm2km1KdX_Lk6FwcOHMZyhAkimHxarqv80VeHLq9upz8YpFGIEw6cJghUoAA8Y4lRRpMEAlEAP2cjrklloARcsqTvXwG-FRjUNGI386EOvkkfTm302ToGG93zkC66Yzh8uM69xT7dH0K6eXFp-X7yrU1Xx-g7_-nCFbvY27Z3yR_H7On-blPNs-VqtqjKZeYRTcyMbbjAXW0MJ73HupE1Wqe1aEiK3U4VVjoCzTkUQgqqlWqk4ZYXaCShqWnMrn-73jm3PQbf2TBs_3_pC6P1TaQ</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Zhang, Yinzhao</creator><creator>Sun, Wei</creator><creator>Hou, Jun</creator><creator>Li, Qianmu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231114</creationdate><title>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</title><author>Zhang, Yinzhao ; Sun, Wei ; Hou, Jun ; Li, Qianmu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-9ad241cb99238f1bd5b1ae884d354cc76a5e30822064543b77d592a26195319b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquila optimizer</topic><topic>Benchmark testing</topic><topic>Big Data</topic><topic>Convergence</topic><topic>intrusion detection</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Search problems</topic><topic>swarm intelligence algorithm</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yinzhao</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Li, Qianmu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yinzhao</au><au>Sun, Wei</au><au>Hou, Jun</au><au>Li, Qianmu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</atitle><btitle>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)</btitle><stitle>DASC/PICOM/CBDCOM/CYBERSCITECH</stitle><date>2023-11-14</date><risdate>2023</risdate><spage>0549</spage><epage>0556</epage><pages>0549-0556</pages><eissn>2837-0740</eissn><eisbn>9798350304602</eisbn><abstract>Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.</abstract><pub>IEEE</pub><doi>10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2837-0740
ispartof 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2023, p.0549-0556
issn 2837-0740
language eng
recordid cdi_ieee_primary_10361401
source IEEE Xplore All Conference Series
subjects Aquila optimizer
Benchmark testing
Big Data
Convergence
intrusion detection
Optimization
Particle swarm optimization
Search problems
swarm intelligence algorithm
Switches
title Hybrid Multi-Strategy Improvements for The Aquila Optimizer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Multi-Strategy%20Improvements%20for%20The%20Aquila%20Optimizer&rft.btitle=2023%20IEEE%20Intl%20Conf%20on%20Dependable,%20Autonomic%20and%20Secure%20Computing,%20Intl%20Conf%20on%20Pervasive%20Intelligence%20and%20Computing,%20Intl%20Conf%20on%20Cloud%20and%20Big%20Data%20Computing,%20Intl%20Conf%20on%20Cyber%20Science%20and%20Technology%20Congress%20(DASC/PiCom/CBDCom/CyberSciTech)&rft.au=Zhang,%20Yinzhao&rft.date=2023-11-14&rft.spage=0549&rft.epage=0556&rft.pages=0549-0556&rft.eissn=2837-0740&rft_id=info:doi/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401&rft.eisbn=9798350304602&rft_dat=%3Cieee_CHZPO%3E10361401%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-9ad241cb99238f1bd5b1ae884d354cc76a5e30822064543b77d592a26195319b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10361401&rfr_iscdi=true