Loading…
Hybrid Multi-Strategy Improvements for The Aquila Optimizer
Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the locat...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 0556 |
container_issue | |
container_start_page | 0549 |
container_title | |
container_volume | |
creator | Zhang, Yinzhao Sun, Wei Hou, Jun Li, Qianmu |
description | Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified. |
doi_str_mv | 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10361401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10361401</ieee_id><sourcerecordid>10361401</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-9ad241cb99238f1bd5b1ae884d354cc76a5e30822064543b77d592a26195319b3</originalsourceid><addsrcrecordid>eNo1j91KwzAYQKMgOGbfwIu-QNfvy5c0CV7VTrfBZMLm9UjXTCOtm2km1KdX_Lk6FwcOHMZyhAkimHxarqv80VeHLq9upz8YpFGIEw6cJghUoAA8Y4lRRpMEAlEAP2cjrklloARcsqTvXwG-FRjUNGI386EOvkkfTm302ToGG93zkC66Yzh8uM69xT7dH0K6eXFp-X7yrU1Xx-g7_-nCFbvY27Z3yR_H7On-blPNs-VqtqjKZeYRTcyMbbjAXW0MJ73HupE1Wqe1aEiK3U4VVjoCzTkUQgqqlWqk4ZYXaCShqWnMrn-73jm3PQbf2TBs_3_pC6P1TaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Yinzhao ; Sun, Wei ; Hou, Jun ; Li, Qianmu</creator><creatorcontrib>Zhang, Yinzhao ; Sun, Wei ; Hou, Jun ; Li, Qianmu</creatorcontrib><description>Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.</description><identifier>EISSN: 2837-0740</identifier><identifier>EISBN: 9798350304602</identifier><identifier>DOI: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aquila optimizer ; Benchmark testing ; Big Data ; Convergence ; intrusion detection ; Optimization ; Particle swarm optimization ; Search problems ; swarm intelligence algorithm ; Switches</subject><ispartof>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2023, p.0549-0556</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10361401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10361401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yinzhao</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Li, Qianmu</creatorcontrib><title>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</title><title>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)</title><addtitle>DASC/PICOM/CBDCOM/CYBERSCITECH</addtitle><description>Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.</description><subject>Aquila optimizer</subject><subject>Benchmark testing</subject><subject>Big Data</subject><subject>Convergence</subject><subject>intrusion detection</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Search problems</subject><subject>swarm intelligence algorithm</subject><subject>Switches</subject><issn>2837-0740</issn><isbn>9798350304602</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j91KwzAYQKMgOGbfwIu-QNfvy5c0CV7VTrfBZMLm9UjXTCOtm2km1KdX_Lk6FwcOHMZyhAkimHxarqv80VeHLq9upz8YpFGIEw6cJghUoAA8Y4lRRpMEAlEAP2cjrklloARcsqTvXwG-FRjUNGI386EOvkkfTm302ToGG93zkC66Yzh8uM69xT7dH0K6eXFp-X7yrU1Xx-g7_-nCFbvY27Z3yR_H7On-blPNs-VqtqjKZeYRTcyMbbjAXW0MJ73HupE1Wqe1aEiK3U4VVjoCzTkUQgqqlWqk4ZYXaCShqWnMrn-73jm3PQbf2TBs_3_pC6P1TaQ</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Zhang, Yinzhao</creator><creator>Sun, Wei</creator><creator>Hou, Jun</creator><creator>Li, Qianmu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231114</creationdate><title>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</title><author>Zhang, Yinzhao ; Sun, Wei ; Hou, Jun ; Li, Qianmu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-9ad241cb99238f1bd5b1ae884d354cc76a5e30822064543b77d592a26195319b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquila optimizer</topic><topic>Benchmark testing</topic><topic>Big Data</topic><topic>Convergence</topic><topic>intrusion detection</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Search problems</topic><topic>swarm intelligence algorithm</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yinzhao</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Li, Qianmu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yinzhao</au><au>Sun, Wei</au><au>Hou, Jun</au><au>Li, Qianmu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Multi-Strategy Improvements for The Aquila Optimizer</atitle><btitle>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)</btitle><stitle>DASC/PICOM/CBDCOM/CYBERSCITECH</stitle><date>2023-11-14</date><risdate>2023</risdate><spage>0549</spage><epage>0556</epage><pages>0549-0556</pages><eissn>2837-0740</eissn><eisbn>9798350304602</eisbn><abstract>Although the original Aquila optimizer shows a strong optimization ability, it will fall into a local optimal solution in many cases. The design of the algorithm is flawed, the switch between exploration and exploitation strategies is extremely rigid, and each strategy is very dependent on the location of the prey. To address these issues, this paper proposes the Hybrid Multi-Strategy Aquila Optimizer (HMAO). This algorithm balances the exploration stage and the exploitation stage in the optimization process, introduces a variety of improvement strategies, enhances the global search ability, improves the convergence speed, and greatly avoids the problem of falling into local optimum, and it has a good performance on 23 benchmark functions Algorithm performance is verified.</abstract><pub>IEEE</pub><doi>10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2837-0740 |
ispartof | 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2023, p.0549-0556 |
issn | 2837-0740 |
language | eng |
recordid | cdi_ieee_primary_10361401 |
source | IEEE Xplore All Conference Series |
subjects | Aquila optimizer Benchmark testing Big Data Convergence intrusion detection Optimization Particle swarm optimization Search problems swarm intelligence algorithm Switches |
title | Hybrid Multi-Strategy Improvements for The Aquila Optimizer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Multi-Strategy%20Improvements%20for%20The%20Aquila%20Optimizer&rft.btitle=2023%20IEEE%20Intl%20Conf%20on%20Dependable,%20Autonomic%20and%20Secure%20Computing,%20Intl%20Conf%20on%20Pervasive%20Intelligence%20and%20Computing,%20Intl%20Conf%20on%20Cloud%20and%20Big%20Data%20Computing,%20Intl%20Conf%20on%20Cyber%20Science%20and%20Technology%20Congress%20(DASC/PiCom/CBDCom/CyberSciTech)&rft.au=Zhang,%20Yinzhao&rft.date=2023-11-14&rft.spage=0549&rft.epage=0556&rft.pages=0549-0556&rft.eissn=2837-0740&rft_id=info:doi/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361401&rft.eisbn=9798350304602&rft_dat=%3Cieee_CHZPO%3E10361401%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-9ad241cb99238f1bd5b1ae884d354cc76a5e30822064543b77d592a26195319b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10361401&rfr_iscdi=true |