Loading…
Real-time Road Signs Detection and Recognition for Enhanced Road Safety
Road sign detection and recognition play a critical role in improving driver safety and awareness in the modern traffic era. This paper describes the development and evaluation of a Road Sign Detection and Recognition System (RSDRS). Our system leverages computer vision techniques and mobile applica...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 137 |
container_issue | |
container_start_page | 132 |
container_title | |
container_volume | |
creator | Teklesenbet, Hermon B. Demoz, Nahom H. Jabiro, Igor H. Tesfay, Yonatan R. Badidi, Elarbi |
description | Road sign detection and recognition play a critical role in improving driver safety and awareness in the modern traffic era. This paper describes the development and evaluation of a Road Sign Detection and Recognition System (RSDRS). Our system leverages computer vision techniques and mobile application technology to provide drivers with real-time visual and auditory feedback based on detected traffic signs. The implementation of RSDRS involves two basic phases: developing a robust recognition model and creating an Android application. The model, trained with the German Traffic Sign Recognition Benchmark (GTSRB) dataset and the YOLOv5s object detection algorithm, serves as the core component for accurate traffic sign recognition. The Android application captures live video frames, integrates seamlessly with the recognition model, and provides intuitive feedback to the driver. The performance evaluation reveals the exceptional capabilities of our system, with an average accuracy of 99.3% and a fast response time of 0.73 milliseconds. Metrics such as recall, precision, and F1 score highlight the model's ability to maintain accuracy while minimizing false positives. Real-world applicability is paramount, and our system excels in a variety of environments and lighting conditions, as evidenced by rigorous testing. |
doi_str_mv | 10.1109/IIT59782.2023.10366480 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10366480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10366480</ieee_id><sourcerecordid>10366480</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-2b29f51088338bb0460def638ac109b42d6c9d005fa17f17809d04d0a66179ac3</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdBsNS8gci8QOqdO8n8LKXWGigIsa7LZOZOHWknkmTTt7doXX2cxXfgMPYgYCEE2Mem2dZWG1wgoFwIkEpVBq5YYbU1sgZpUFp1zWZYaVki1HjLinH8AgChEBTaGVu35A7llI7E294F_p72eeTPNJGfUp-5y4G35Pt9Tr8c-4Gv8qfLnsLl4SJNpzt2E91hpOKyc_bxstouX8vN27pZPm3KJISdSuzQxlqAMVKaroNKQaCopHH-XNRVGJS3AaCOTugotIEzVQGcUkJb5-Wc3f95ExHtvod0dMNp998ufwCCAkxN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-time Road Signs Detection and Recognition for Enhanced Road Safety</title><source>IEEE Xplore All Conference Series</source><creator>Teklesenbet, Hermon B. ; Demoz, Nahom H. ; Jabiro, Igor H. ; Tesfay, Yonatan R. ; Badidi, Elarbi</creator><creatorcontrib>Teklesenbet, Hermon B. ; Demoz, Nahom H. ; Jabiro, Igor H. ; Tesfay, Yonatan R. ; Badidi, Elarbi</creatorcontrib><description>Road sign detection and recognition play a critical role in improving driver safety and awareness in the modern traffic era. This paper describes the development and evaluation of a Road Sign Detection and Recognition System (RSDRS). Our system leverages computer vision techniques and mobile application technology to provide drivers with real-time visual and auditory feedback based on detected traffic signs. The implementation of RSDRS involves two basic phases: developing a robust recognition model and creating an Android application. The model, trained with the German Traffic Sign Recognition Benchmark (GTSRB) dataset and the YOLOv5s object detection algorithm, serves as the core component for accurate traffic sign recognition. The Android application captures live video frames, integrates seamlessly with the recognition model, and provides intuitive feedback to the driver. The performance evaluation reveals the exceptional capabilities of our system, with an average accuracy of 99.3% and a fast response time of 0.73 milliseconds. Metrics such as recall, precision, and F1 score highlight the model's ability to maintain accuracy while minimizing false positives. Real-world applicability is paramount, and our system excels in a variety of environments and lighting conditions, as evidenced by rigorous testing.</description><identifier>EISSN: 2473-2052</identifier><identifier>EISBN: 9798350382396</identifier><identifier>DOI: 10.1109/IIT59782.2023.10366480</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer vision ; Deep Learning ; Driver Assistance System ; Mobile Application ; Mobile applications ; Real-time systems ; Roads ; Traffic Sign Recognition ; Visualization ; YOLO</subject><ispartof>2023 15th International Conference on Innovations in Information Technology (IIT), 2023, p.132-137</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10366480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10366480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teklesenbet, Hermon B.</creatorcontrib><creatorcontrib>Demoz, Nahom H.</creatorcontrib><creatorcontrib>Jabiro, Igor H.</creatorcontrib><creatorcontrib>Tesfay, Yonatan R.</creatorcontrib><creatorcontrib>Badidi, Elarbi</creatorcontrib><title>Real-time Road Signs Detection and Recognition for Enhanced Road Safety</title><title>2023 15th International Conference on Innovations in Information Technology (IIT)</title><addtitle>IIT</addtitle><description>Road sign detection and recognition play a critical role in improving driver safety and awareness in the modern traffic era. This paper describes the development and evaluation of a Road Sign Detection and Recognition System (RSDRS). Our system leverages computer vision techniques and mobile application technology to provide drivers with real-time visual and auditory feedback based on detected traffic signs. The implementation of RSDRS involves two basic phases: developing a robust recognition model and creating an Android application. The model, trained with the German Traffic Sign Recognition Benchmark (GTSRB) dataset and the YOLOv5s object detection algorithm, serves as the core component for accurate traffic sign recognition. The Android application captures live video frames, integrates seamlessly with the recognition model, and provides intuitive feedback to the driver. The performance evaluation reveals the exceptional capabilities of our system, with an average accuracy of 99.3% and a fast response time of 0.73 milliseconds. Metrics such as recall, precision, and F1 score highlight the model's ability to maintain accuracy while minimizing false positives. Real-world applicability is paramount, and our system excels in a variety of environments and lighting conditions, as evidenced by rigorous testing.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Deep Learning</subject><subject>Driver Assistance System</subject><subject>Mobile Application</subject><subject>Mobile applications</subject><subject>Real-time systems</subject><subject>Roads</subject><subject>Traffic Sign Recognition</subject><subject>Visualization</subject><subject>YOLO</subject><issn>2473-2052</issn><isbn>9798350382396</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdBsNS8gci8QOqdO8n8LKXWGigIsa7LZOZOHWknkmTTt7doXX2cxXfgMPYgYCEE2Mem2dZWG1wgoFwIkEpVBq5YYbU1sgZpUFp1zWZYaVki1HjLinH8AgChEBTaGVu35A7llI7E294F_p72eeTPNJGfUp-5y4G35Pt9Tr8c-4Gv8qfLnsLl4SJNpzt2E91hpOKyc_bxstouX8vN27pZPm3KJISdSuzQxlqAMVKaroNKQaCopHH-XNRVGJS3AaCOTugotIEzVQGcUkJb5-Wc3f95ExHtvod0dMNp998ufwCCAkxN</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Teklesenbet, Hermon B.</creator><creator>Demoz, Nahom H.</creator><creator>Jabiro, Igor H.</creator><creator>Tesfay, Yonatan R.</creator><creator>Badidi, Elarbi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231114</creationdate><title>Real-time Road Signs Detection and Recognition for Enhanced Road Safety</title><author>Teklesenbet, Hermon B. ; Demoz, Nahom H. ; Jabiro, Igor H. ; Tesfay, Yonatan R. ; Badidi, Elarbi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-2b29f51088338bb0460def638ac109b42d6c9d005fa17f17809d04d0a66179ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Deep Learning</topic><topic>Driver Assistance System</topic><topic>Mobile Application</topic><topic>Mobile applications</topic><topic>Real-time systems</topic><topic>Roads</topic><topic>Traffic Sign Recognition</topic><topic>Visualization</topic><topic>YOLO</topic><toplevel>online_resources</toplevel><creatorcontrib>Teklesenbet, Hermon B.</creatorcontrib><creatorcontrib>Demoz, Nahom H.</creatorcontrib><creatorcontrib>Jabiro, Igor H.</creatorcontrib><creatorcontrib>Tesfay, Yonatan R.</creatorcontrib><creatorcontrib>Badidi, Elarbi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teklesenbet, Hermon B.</au><au>Demoz, Nahom H.</au><au>Jabiro, Igor H.</au><au>Tesfay, Yonatan R.</au><au>Badidi, Elarbi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-time Road Signs Detection and Recognition for Enhanced Road Safety</atitle><btitle>2023 15th International Conference on Innovations in Information Technology (IIT)</btitle><stitle>IIT</stitle><date>2023-11-14</date><risdate>2023</risdate><spage>132</spage><epage>137</epage><pages>132-137</pages><eissn>2473-2052</eissn><eisbn>9798350382396</eisbn><abstract>Road sign detection and recognition play a critical role in improving driver safety and awareness in the modern traffic era. This paper describes the development and evaluation of a Road Sign Detection and Recognition System (RSDRS). Our system leverages computer vision techniques and mobile application technology to provide drivers with real-time visual and auditory feedback based on detected traffic signs. The implementation of RSDRS involves two basic phases: developing a robust recognition model and creating an Android application. The model, trained with the German Traffic Sign Recognition Benchmark (GTSRB) dataset and the YOLOv5s object detection algorithm, serves as the core component for accurate traffic sign recognition. The Android application captures live video frames, integrates seamlessly with the recognition model, and provides intuitive feedback to the driver. The performance evaluation reveals the exceptional capabilities of our system, with an average accuracy of 99.3% and a fast response time of 0.73 milliseconds. Metrics such as recall, precision, and F1 score highlight the model's ability to maintain accuracy while minimizing false positives. Real-world applicability is paramount, and our system excels in a variety of environments and lighting conditions, as evidenced by rigorous testing.</abstract><pub>IEEE</pub><doi>10.1109/IIT59782.2023.10366480</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-2052 |
ispartof | 2023 15th International Conference on Innovations in Information Technology (IIT), 2023, p.132-137 |
issn | 2473-2052 |
language | eng |
recordid | cdi_ieee_primary_10366480 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Computer vision Deep Learning Driver Assistance System Mobile Application Mobile applications Real-time systems Roads Traffic Sign Recognition Visualization YOLO |
title | Real-time Road Signs Detection and Recognition for Enhanced Road Safety |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-time%20Road%20Signs%20Detection%20and%20Recognition%20for%20Enhanced%20Road%20Safety&rft.btitle=2023%2015th%20International%20Conference%20on%20Innovations%20in%20Information%20Technology%20(IIT)&rft.au=Teklesenbet,%20Hermon%20B.&rft.date=2023-11-14&rft.spage=132&rft.epage=137&rft.pages=132-137&rft.eissn=2473-2052&rft_id=info:doi/10.1109/IIT59782.2023.10366480&rft.eisbn=9798350382396&rft_dat=%3Cieee_CHZPO%3E10366480%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-2b29f51088338bb0460def638ac109b42d6c9d005fa17f17809d04d0a66179ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10366480&rfr_iscdi=true |