Loading…

Effects of Object Mass on Balancing for Whole-Body Lifting Tasks

Despite the importance and prevalence of loco-manipulation tasks by humanoids, existing criteria and control methods for stability are mostly developed for unloaded legged gait. In this paper, the stability during lifting tasks is comprehensively analyzed to determine the role of the lifted object m...

Full description

Saved in:
Bibliographic Details
Main Authors: Song, Hyunjong, Peng, William Z., Kim, Joo H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Song, Hyunjong
Peng, William Z.
Kim, Joo H.
description Despite the importance and prevalence of loco-manipulation tasks by humanoids, existing criteria and control methods for stability are mostly developed for unloaded legged gait. In this paper, the stability during lifting tasks is comprehensively analyzed to determine the role of the lifted object mass in balancing. The stability of a simple two-degree-of-freedom lifting model and a whole-body humanoid robot are evaluated by constructing their balanced state boundaries, which represent their specific capabilities in maintaining balance, through an optimization-based framework for varying combinations of object mass, joint torque limits, and base of support dimensions. Comparative analysis of the rate of change of the linear and centroidal angular momenta quantifies the nonlinear and nontrivial tradeoffs, i.e., contribution or obstruction, of the effects of the object mass on balancing. Overall, increasing the object mass enhances balance capability subject to the limiting factors of system kinematic and actuation limits, center of pressure within the base of support, friction cone, and unilateral normal contact forces between the feet and the ground.
doi_str_mv 10.1109/Humanoids57100.2023.10375174
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10375174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10375174</ieee_id><sourcerecordid>10375174</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-caf068c38e37784215ed8c846d9943660cfdc8dbc3ff7c9bfe0efb8693d35a313</originalsourceid><addsrcrecordid>eNo1j7tOw0AURBckJKLgP6DYgtbm7t59dpAoECSjNEGU0Xof4ODYyGuK_D1BQDVzpjjSEHLDoGIM7O366-D6oQ1ZagZQceBYMUAtmRZnpLDaGpSAgFybczLjTIkSpIFLUuS8BwBkxliuZuRulVL0U6ZDoptmf6r02eUT9nThOtf7tn-jaRjp6_vQxXIxhCOt2zT9zFuXP_IVuUiuy7H4yzl5eVhtl-uy3jw-Le_rsuUgptK7BMp4NBG1NoIzGYPxRqhgrUClwKfgTWg8pqS9bVKEmBqjLAaUDhnOyfWvt40x7j7H9uDG4-7_NH4DFkpNbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effects of Object Mass on Balancing for Whole-Body Lifting Tasks</title><source>IEEE Xplore All Conference Series</source><creator>Song, Hyunjong ; Peng, William Z. ; Kim, Joo H.</creator><creatorcontrib>Song, Hyunjong ; Peng, William Z. ; Kim, Joo H.</creatorcontrib><description>Despite the importance and prevalence of loco-manipulation tasks by humanoids, existing criteria and control methods for stability are mostly developed for unloaded legged gait. In this paper, the stability during lifting tasks is comprehensively analyzed to determine the role of the lifted object mass in balancing. The stability of a simple two-degree-of-freedom lifting model and a whole-body humanoid robot are evaluated by constructing their balanced state boundaries, which represent their specific capabilities in maintaining balance, through an optimization-based framework for varying combinations of object mass, joint torque limits, and base of support dimensions. Comparative analysis of the rate of change of the linear and centroidal angular momenta quantifies the nonlinear and nontrivial tradeoffs, i.e., contribution or obstruction, of the effects of the object mass on balancing. Overall, increasing the object mass enhances balance capability subject to the limiting factors of system kinematic and actuation limits, center of pressure within the base of support, friction cone, and unilateral normal contact forces between the feet and the ground.</description><identifier>EISSN: 2164-0580</identifier><identifier>EISBN: 9798350303278</identifier><identifier>DOI: 10.1109/Humanoids57100.2023.10375174</identifier><language>eng</language><publisher>IEEE</publisher><subject>Friction ; Humanoid robots ; Kinematics ; Limiting ; Stability criteria ; Torque</subject><ispartof>2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), 2023, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10375174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10375174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Hyunjong</creatorcontrib><creatorcontrib>Peng, William Z.</creatorcontrib><creatorcontrib>Kim, Joo H.</creatorcontrib><title>Effects of Object Mass on Balancing for Whole-Body Lifting Tasks</title><title>2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids)</title><addtitle>HUMANOIDS</addtitle><description>Despite the importance and prevalence of loco-manipulation tasks by humanoids, existing criteria and control methods for stability are mostly developed for unloaded legged gait. In this paper, the stability during lifting tasks is comprehensively analyzed to determine the role of the lifted object mass in balancing. The stability of a simple two-degree-of-freedom lifting model and a whole-body humanoid robot are evaluated by constructing their balanced state boundaries, which represent their specific capabilities in maintaining balance, through an optimization-based framework for varying combinations of object mass, joint torque limits, and base of support dimensions. Comparative analysis of the rate of change of the linear and centroidal angular momenta quantifies the nonlinear and nontrivial tradeoffs, i.e., contribution or obstruction, of the effects of the object mass on balancing. Overall, increasing the object mass enhances balance capability subject to the limiting factors of system kinematic and actuation limits, center of pressure within the base of support, friction cone, and unilateral normal contact forces between the feet and the ground.</description><subject>Friction</subject><subject>Humanoid robots</subject><subject>Kinematics</subject><subject>Limiting</subject><subject>Stability criteria</subject><subject>Torque</subject><issn>2164-0580</issn><isbn>9798350303278</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j7tOw0AURBckJKLgP6DYgtbm7t59dpAoECSjNEGU0Xof4ODYyGuK_D1BQDVzpjjSEHLDoGIM7O366-D6oQ1ZagZQceBYMUAtmRZnpLDaGpSAgFybczLjTIkSpIFLUuS8BwBkxliuZuRulVL0U6ZDoptmf6r02eUT9nThOtf7tn-jaRjp6_vQxXIxhCOt2zT9zFuXP_IVuUiuy7H4yzl5eVhtl-uy3jw-Le_rsuUgptK7BMp4NBG1NoIzGYPxRqhgrUClwKfgTWg8pqS9bVKEmBqjLAaUDhnOyfWvt40x7j7H9uDG4-7_NH4DFkpNbg</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Song, Hyunjong</creator><creator>Peng, William Z.</creator><creator>Kim, Joo H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231212</creationdate><title>Effects of Object Mass on Balancing for Whole-Body Lifting Tasks</title><author>Song, Hyunjong ; Peng, William Z. ; Kim, Joo H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-caf068c38e37784215ed8c846d9943660cfdc8dbc3ff7c9bfe0efb8693d35a313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Friction</topic><topic>Humanoid robots</topic><topic>Kinematics</topic><topic>Limiting</topic><topic>Stability criteria</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Hyunjong</creatorcontrib><creatorcontrib>Peng, William Z.</creatorcontrib><creatorcontrib>Kim, Joo H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Hyunjong</au><au>Peng, William Z.</au><au>Kim, Joo H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effects of Object Mass on Balancing for Whole-Body Lifting Tasks</atitle><btitle>2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids)</btitle><stitle>HUMANOIDS</stitle><date>2023-12-12</date><risdate>2023</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2164-0580</eissn><eisbn>9798350303278</eisbn><abstract>Despite the importance and prevalence of loco-manipulation tasks by humanoids, existing criteria and control methods for stability are mostly developed for unloaded legged gait. In this paper, the stability during lifting tasks is comprehensively analyzed to determine the role of the lifted object mass in balancing. The stability of a simple two-degree-of-freedom lifting model and a whole-body humanoid robot are evaluated by constructing their balanced state boundaries, which represent their specific capabilities in maintaining balance, through an optimization-based framework for varying combinations of object mass, joint torque limits, and base of support dimensions. Comparative analysis of the rate of change of the linear and centroidal angular momenta quantifies the nonlinear and nontrivial tradeoffs, i.e., contribution or obstruction, of the effects of the object mass on balancing. Overall, increasing the object mass enhances balance capability subject to the limiting factors of system kinematic and actuation limits, center of pressure within the base of support, friction cone, and unilateral normal contact forces between the feet and the ground.</abstract><pub>IEEE</pub><doi>10.1109/Humanoids57100.2023.10375174</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2164-0580
ispartof 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), 2023, p.1-8
issn 2164-0580
language eng
recordid cdi_ieee_primary_10375174
source IEEE Xplore All Conference Series
subjects Friction
Humanoid robots
Kinematics
Limiting
Stability criteria
Torque
title Effects of Object Mass on Balancing for Whole-Body Lifting Tasks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effects%20of%20Object%20Mass%20on%20Balancing%20for%20Whole-Body%20Lifting%20Tasks&rft.btitle=2023%20IEEE-RAS%2022nd%20International%20Conference%20on%20Humanoid%20Robots%20(Humanoids)&rft.au=Song,%20Hyunjong&rft.date=2023-12-12&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2164-0580&rft_id=info:doi/10.1109/Humanoids57100.2023.10375174&rft.eisbn=9798350303278&rft_dat=%3Cieee_CHZPO%3E10375174%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-caf068c38e37784215ed8c846d9943660cfdc8dbc3ff7c9bfe0efb8693d35a313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10375174&rfr_iscdi=true