Loading…
A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern
We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 95 |
container_issue | |
container_start_page | 91 |
container_title | |
container_volume | |
creator | Varnosfaderani, Shiva Maleki Rahman, Rihat Sarhan, Nabil J. Alhawari, Mohammad |
description | We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%. |
doi_str_mv | 10.1109/ICM60448.2023.10378881 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10378881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10378881</ieee_id><sourcerecordid>10378881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-931a18a24425f1400cfae565b4f25f1b84de0edd7bc683b1bdfb6dd53479ad713</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhFdBsNS-gci-QOo52U129zLWWgstFqrXZZM9Kyv5M4mU-vRG_LkamPlmLoaxG4Q5Ipjb9WKbgpR6HkMs5ghCaa3xjM2MMlokIDToWJ-zSYyJiTBV5pLN-v4NAAQqDUZM2HvG91T6KDvajviuOVLHt7a2r1RRPfBt46jkvun4sg0ltUMoRj58fozw_tQPVPX8zvbkeFPznR3CWIr2LRXBj-S9DeXpnx_jgbr6il14W_Y0-9Upe3lYPi8eo83Tar3INlFANENkBFrUNpYyTjxKgMJbStIkl_7byLV0BOScyotUixxz5_PUuURIZaxTKKbs-mc3ENGh7UJlu9Ph7yXxBcqjXPk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</title><source>IEEE Xplore All Conference Series</source><creator>Varnosfaderani, Shiva Maleki ; Rahman, Rihat ; Sarhan, Nabil J. ; Alhawari, Mohammad</creator><creatorcontrib>Varnosfaderani, Shiva Maleki ; Rahman, Rihat ; Sarhan, Nabil J. ; Alhawari, Mohammad</creatorcontrib><description>We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.</description><identifier>EISSN: 2159-1679</identifier><identifier>EISBN: 9798350380828</identifier><identifier>DOI: 10.1109/ICM60448.2023.10378881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; energy efficiency ; epileptic seizure monitoring ; patient-specific daily seizure pattern ; self-aware power management model</subject><ispartof>2023 International Conference on Microelectronics (ICM), 2023, p.91-95</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10378881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10378881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varnosfaderani, Shiva Maleki</creatorcontrib><creatorcontrib>Rahman, Rihat</creatorcontrib><creatorcontrib>Sarhan, Nabil J.</creatorcontrib><creatorcontrib>Alhawari, Mohammad</creatorcontrib><title>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</title><title>2023 International Conference on Microelectronics (ICM)</title><addtitle>ICM</addtitle><description>We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.</description><subject>Deep learning</subject><subject>energy efficiency</subject><subject>epileptic seizure monitoring</subject><subject>patient-specific daily seizure pattern</subject><subject>self-aware power management model</subject><issn>2159-1679</issn><isbn>9798350380828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1Kw0AUhFdBsNS-gci-QOo52U129zLWWgstFqrXZZM9Kyv5M4mU-vRG_LkamPlmLoaxG4Q5Ipjb9WKbgpR6HkMs5ghCaa3xjM2MMlokIDToWJ-zSYyJiTBV5pLN-v4NAAQqDUZM2HvG91T6KDvajviuOVLHt7a2r1RRPfBt46jkvun4sg0ltUMoRj58fozw_tQPVPX8zvbkeFPznR3CWIr2LRXBj-S9DeXpnx_jgbr6il14W_Y0-9Upe3lYPi8eo83Tar3INlFANENkBFrUNpYyTjxKgMJbStIkl_7byLV0BOScyotUixxz5_PUuURIZaxTKKbs-mc3ENGh7UJlu9Ph7yXxBcqjXPk</recordid><startdate>20231217</startdate><enddate>20231217</enddate><creator>Varnosfaderani, Shiva Maleki</creator><creator>Rahman, Rihat</creator><creator>Sarhan, Nabil J.</creator><creator>Alhawari, Mohammad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231217</creationdate><title>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</title><author>Varnosfaderani, Shiva Maleki ; Rahman, Rihat ; Sarhan, Nabil J. ; Alhawari, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-931a18a24425f1400cfae565b4f25f1b84de0edd7bc683b1bdfb6dd53479ad713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep learning</topic><topic>energy efficiency</topic><topic>epileptic seizure monitoring</topic><topic>patient-specific daily seizure pattern</topic><topic>self-aware power management model</topic><toplevel>online_resources</toplevel><creatorcontrib>Varnosfaderani, Shiva Maleki</creatorcontrib><creatorcontrib>Rahman, Rihat</creatorcontrib><creatorcontrib>Sarhan, Nabil J.</creatorcontrib><creatorcontrib>Alhawari, Mohammad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varnosfaderani, Shiva Maleki</au><au>Rahman, Rihat</au><au>Sarhan, Nabil J.</au><au>Alhawari, Mohammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</atitle><btitle>2023 International Conference on Microelectronics (ICM)</btitle><stitle>ICM</stitle><date>2023-12-17</date><risdate>2023</risdate><spage>91</spage><epage>95</epage><pages>91-95</pages><eissn>2159-1679</eissn><eisbn>9798350380828</eisbn><abstract>We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.</abstract><pub>IEEE</pub><doi>10.1109/ICM60448.2023.10378881</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2159-1679 |
ispartof | 2023 International Conference on Microelectronics (ICM), 2023, p.91-95 |
issn | 2159-1679 |
language | eng |
recordid | cdi_ieee_primary_10378881 |
source | IEEE Xplore All Conference Series |
subjects | Deep learning energy efficiency epileptic seizure monitoring patient-specific daily seizure pattern self-aware power management model |
title | A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Self-Aware%20Power%20Management%20Model%20for%20Epileptic%20Seizure%20Systems%20Based%20on%20Patient-Specific%20Daily%20Seizure%20Pattern&rft.btitle=2023%20International%20Conference%20on%20Microelectronics%20(ICM)&rft.au=Varnosfaderani,%20Shiva%20Maleki&rft.date=2023-12-17&rft.spage=91&rft.epage=95&rft.pages=91-95&rft.eissn=2159-1679&rft_id=info:doi/10.1109/ICM60448.2023.10378881&rft.eisbn=9798350380828&rft_dat=%3Cieee_CHZPO%3E10378881%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-931a18a24425f1400cfae565b4f25f1b84de0edd7bc683b1bdfb6dd53479ad713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10378881&rfr_iscdi=true |