Loading…

A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern

We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power...

Full description

Saved in:
Bibliographic Details
Main Authors: Varnosfaderani, Shiva Maleki, Rahman, Rihat, Sarhan, Nabil J., Alhawari, Mohammad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 95
container_issue
container_start_page 91
container_title
container_volume
creator Varnosfaderani, Shiva Maleki
Rahman, Rihat
Sarhan, Nabil J.
Alhawari, Mohammad
description We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.
doi_str_mv 10.1109/ICM60448.2023.10378881
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10378881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10378881</ieee_id><sourcerecordid>10378881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-931a18a24425f1400cfae565b4f25f1b84de0edd7bc683b1bdfb6dd53479ad713</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhFdBsNS-gci-QOo52U129zLWWgstFqrXZZM9Kyv5M4mU-vRG_LkamPlmLoaxG4Q5Ipjb9WKbgpR6HkMs5ghCaa3xjM2MMlokIDToWJ-zSYyJiTBV5pLN-v4NAAQqDUZM2HvG91T6KDvajviuOVLHt7a2r1RRPfBt46jkvun4sg0ltUMoRj58fozw_tQPVPX8zvbkeFPznR3CWIr2LRXBj-S9DeXpnx_jgbr6il14W_Y0-9Upe3lYPi8eo83Tar3INlFANENkBFrUNpYyTjxKgMJbStIkl_7byLV0BOScyotUixxz5_PUuURIZaxTKKbs-mc3ENGh7UJlu9Ph7yXxBcqjXPk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</title><source>IEEE Xplore All Conference Series</source><creator>Varnosfaderani, Shiva Maleki ; Rahman, Rihat ; Sarhan, Nabil J. ; Alhawari, Mohammad</creator><creatorcontrib>Varnosfaderani, Shiva Maleki ; Rahman, Rihat ; Sarhan, Nabil J. ; Alhawari, Mohammad</creatorcontrib><description>We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.</description><identifier>EISSN: 2159-1679</identifier><identifier>EISBN: 9798350380828</identifier><identifier>DOI: 10.1109/ICM60448.2023.10378881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; energy efficiency ; epileptic seizure monitoring ; patient-specific daily seizure pattern ; self-aware power management model</subject><ispartof>2023 International Conference on Microelectronics (ICM), 2023, p.91-95</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10378881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10378881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varnosfaderani, Shiva Maleki</creatorcontrib><creatorcontrib>Rahman, Rihat</creatorcontrib><creatorcontrib>Sarhan, Nabil J.</creatorcontrib><creatorcontrib>Alhawari, Mohammad</creatorcontrib><title>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</title><title>2023 International Conference on Microelectronics (ICM)</title><addtitle>ICM</addtitle><description>We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.</description><subject>Deep learning</subject><subject>energy efficiency</subject><subject>epileptic seizure monitoring</subject><subject>patient-specific daily seizure pattern</subject><subject>self-aware power management model</subject><issn>2159-1679</issn><isbn>9798350380828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1Kw0AUhFdBsNS-gci-QOo52U129zLWWgstFqrXZZM9Kyv5M4mU-vRG_LkamPlmLoaxG4Q5Ipjb9WKbgpR6HkMs5ghCaa3xjM2MMlokIDToWJ-zSYyJiTBV5pLN-v4NAAQqDUZM2HvG91T6KDvajviuOVLHt7a2r1RRPfBt46jkvun4sg0ltUMoRj58fozw_tQPVPX8zvbkeFPznR3CWIr2LRXBj-S9DeXpnx_jgbr6il14W_Y0-9Upe3lYPi8eo83Tar3INlFANENkBFrUNpYyTjxKgMJbStIkl_7byLV0BOScyotUixxz5_PUuURIZaxTKKbs-mc3ENGh7UJlu9Ph7yXxBcqjXPk</recordid><startdate>20231217</startdate><enddate>20231217</enddate><creator>Varnosfaderani, Shiva Maleki</creator><creator>Rahman, Rihat</creator><creator>Sarhan, Nabil J.</creator><creator>Alhawari, Mohammad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231217</creationdate><title>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</title><author>Varnosfaderani, Shiva Maleki ; Rahman, Rihat ; Sarhan, Nabil J. ; Alhawari, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-931a18a24425f1400cfae565b4f25f1b84de0edd7bc683b1bdfb6dd53479ad713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep learning</topic><topic>energy efficiency</topic><topic>epileptic seizure monitoring</topic><topic>patient-specific daily seizure pattern</topic><topic>self-aware power management model</topic><toplevel>online_resources</toplevel><creatorcontrib>Varnosfaderani, Shiva Maleki</creatorcontrib><creatorcontrib>Rahman, Rihat</creatorcontrib><creatorcontrib>Sarhan, Nabil J.</creatorcontrib><creatorcontrib>Alhawari, Mohammad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varnosfaderani, Shiva Maleki</au><au>Rahman, Rihat</au><au>Sarhan, Nabil J.</au><au>Alhawari, Mohammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern</atitle><btitle>2023 International Conference on Microelectronics (ICM)</btitle><stitle>ICM</stitle><date>2023-12-17</date><risdate>2023</risdate><spage>91</spage><epage>95</epage><pages>91-95</pages><eissn>2159-1679</eissn><eisbn>9798350380828</eisbn><abstract>We analyze and compare various hardware-based epileptic seizure systems and discuss the challenges and opportunities for reducing power consumption and increasing the battery lifetime. Furthermore, we propose a power management model that employs patient-specific seizure patterns to manage the power consumption of the overall system. This model determines the patient-specific seizure pattern and switches the system to sleep mode when the likelihood of seizure occurrence is zero or very low. Our analysis shows that our proposed power management model could effectively reduce the power consumption by 49\% compared to the complex model while the performance reduction is less than 1\%.</abstract><pub>IEEE</pub><doi>10.1109/ICM60448.2023.10378881</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2159-1679
ispartof 2023 International Conference on Microelectronics (ICM), 2023, p.91-95
issn 2159-1679
language eng
recordid cdi_ieee_primary_10378881
source IEEE Xplore All Conference Series
subjects Deep learning
energy efficiency
epileptic seizure monitoring
patient-specific daily seizure pattern
self-aware power management model
title A Self-Aware Power Management Model for Epileptic Seizure Systems Based on Patient-Specific Daily Seizure Pattern
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Self-Aware%20Power%20Management%20Model%20for%20Epileptic%20Seizure%20Systems%20Based%20on%20Patient-Specific%20Daily%20Seizure%20Pattern&rft.btitle=2023%20International%20Conference%20on%20Microelectronics%20(ICM)&rft.au=Varnosfaderani,%20Shiva%20Maleki&rft.date=2023-12-17&rft.spage=91&rft.epage=95&rft.pages=91-95&rft.eissn=2159-1679&rft_id=info:doi/10.1109/ICM60448.2023.10378881&rft.eisbn=9798350380828&rft_dat=%3Cieee_CHZPO%3E10378881%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-931a18a24425f1400cfae565b4f25f1b84de0edd7bc683b1bdfb6dd53479ad713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10378881&rfr_iscdi=true