Loading…

Adaptive Optimal Discrete-Time Output-Feedback Using an Internal Model Principle and Adaptive Dynamic Programming

In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming (ADP) technique based on the internal model principle (IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measure...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/CAA journal of automatica sinica 2024-01, Vol.11 (1), p.131-140
Main Authors: Wang, Zhongyang, Wang, Youqing, Kowalczuk, Zdzislaw
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming (ADP) technique based on the internal model principle (IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2023.123759