Loading…

A High-Sensitivity Benchtop X-Ray Fluorescence Emission Tomography (XFET) System With a Full-Ring of X-Ray Imaging-Spectrometers and a Compound-Eye Collimation Aperture

The advent of metal-based drugs and metal nanoparticles as therapeutic agents in anti-tumor treatment has motivated the advancement of X-ray fluorescence computed tomography (XFCT) techniques. An XFCT imaging modality can detect, quantify, and image the biodistribution of metal elements using the X-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-05, Vol.43 (5), p.1782-1791
Main Authors: Mandot, Shubham, Zannoni, Elena M., Cai, Ling, Nie, Xingchen, Riviere, Patrick J. La, Wilson, Matthew D., Meng, Ling Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advent of metal-based drugs and metal nanoparticles as therapeutic agents in anti-tumor treatment has motivated the advancement of X-ray fluorescence computed tomography (XFCT) techniques. An XFCT imaging modality can detect, quantify, and image the biodistribution of metal elements using the X-ray fluorescence signal emitted upon X-ray irradiation. However, the majority of XFCT imaging systems and instrumentation developed so far rely on a single or a small number of detectors. This work introduces the first full-ring benchtop X-ray fluorescence emission tomography (XFET) system equipped with 24 solid-state detectors arranged in a hexagonal geometry and a 96-pinhole compound-eye collimator. We experimentally demonstrate the system's sensitivity and its capability of multi-element detection and quantification by performing imaging studies on an animal-sized phantom. In our preliminary studies, the phantom was irradiated with a pencil beam of X-rays produced using a low-powered polychromatic X-ray source (90kVp and 60W max power). This investigation shows a significant enhancement in the detection limit of gadolinium to as low as 0.1 mg/mL concentration. The results also illustrate the unique capabilities of the XFET system to simultaneously determine the spatial distribution and accurately quantify the concentrations of multiple metal elements.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2023.3348791