Loading…

Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning

As a standardized software framework and open E/E system architecture, the AUTomotive Open System ARchitecture (AUTOSAR) has been widely applied to autonomous driving systems to enable real-time control. However, due to the increasing design complexity and the lack of efficient algorithms and design...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang, Yanxing, Zhang, Nan, Yan, Dengke, Wei, Xian, Zhou, Junlong, Liu, Hong, Chen, Mingsong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 488
container_issue
container_start_page 484
container_title
container_volume
creator Yang, Yanxing
Zhang, Nan
Yan, Dengke
Wei, Xian
Zhou, Junlong
Liu, Hong
Chen, Mingsong
description As a standardized software framework and open E/E system architecture, the AUTomotive Open System ARchitecture (AUTOSAR) has been widely applied to autonomous driving systems to enable real-time control. However, due to the increasing design complexity and the lack of efficient algorithms and design automation tools, it is difficult to quickly figure out an optimal task scheduling scheme for an AUTOSAR-based system. To address this problem, we introduce a novel task scheduling method that can parallelly search for an optimal solution with the help of our proposed pruning strategy. Experimental results on a real-world AUTOSAR-based autonomous driving system demonstrate that our approach can achieve much better task scheduling solutions than the ones obtained manually and significantly reduce the overall task scheduling time.
doi_str_mv 10.1109/RTSS59052.2023.00057
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10405919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10405919</ieee_id><sourcerecordid>10405919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-2602768529c8bedc650390c14a152078a65a397a89c0d8ae5afac0cf67da8e283</originalsourceid><addsrcrecordid>eNotjkFPwjAYQKuJiYj8Aw79A5tfW7q23iZBJSFhYePihXx2rVbnIC2L4d-L0dNL3uHlETJlkDMG5m7T1LU0IHnOgYscAKS6IBOjjBYSBNdS6Usy4lIVmWCKX5OblD4AOEjBR-TlIQbn6bJvh3SMJ1rhwcV72uy_MbaJLrwPNrj-SBtMn7S2764dutC_Ub-PtNw267rc0CH9mgojdp3raBWH_ixuyZXHLrnJP8dk-7ho5s_Zav20nJerLDBmjhkvgKtCS26sfnWtLc7XBiybIZMclMZCojAKtbHQanQSPVqwvlAtase1GJPpXzc453aHGL4wnnYMZiANM-IHdMVSyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning</title><source>IEEE Xplore All Conference Series</source><creator>Yang, Yanxing ; Zhang, Nan ; Yan, Dengke ; Wei, Xian ; Zhou, Junlong ; Liu, Hong ; Chen, Mingsong</creator><creatorcontrib>Yang, Yanxing ; Zhang, Nan ; Yan, Dengke ; Wei, Xian ; Zhou, Junlong ; Liu, Hong ; Chen, Mingsong</creatorcontrib><description>As a standardized software framework and open E/E system architecture, the AUTomotive Open System ARchitecture (AUTOSAR) has been widely applied to autonomous driving systems to enable real-time control. However, due to the increasing design complexity and the lack of efficient algorithms and design automation tools, it is difficult to quickly figure out an optimal task scheduling scheme for an AUTOSAR-based system. To address this problem, we introduce a novel task scheduling method that can parallelly search for an optimal solution with the help of our proposed pruning strategy. Experimental results on a real-world AUTOSAR-based autonomous driving system demonstrate that our approach can achieve much better task scheduling solutions than the ones obtained manually and significantly reduce the overall task scheduling time.</description><identifier>EISSN: 2576-3172</identifier><identifier>EISBN: 9798350328578</identifier><identifier>DOI: 10.1109/RTSS59052.2023.00057</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous vehicles ; Complexity theory ; I. Introduction ; Job shop scheduling ; Real-time systems ; Search problems ; Systems architecture ; Task analysis</subject><ispartof>2023 IEEE Real-Time Systems Symposium (RTSS), 2023, p.484-488</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10405919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10405919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yanxing</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Yan, Dengke</creatorcontrib><creatorcontrib>Wei, Xian</creatorcontrib><creatorcontrib>Zhou, Junlong</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Chen, Mingsong</creatorcontrib><title>Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning</title><title>2023 IEEE Real-Time Systems Symposium (RTSS)</title><addtitle>RTSS</addtitle><description>As a standardized software framework and open E/E system architecture, the AUTomotive Open System ARchitecture (AUTOSAR) has been widely applied to autonomous driving systems to enable real-time control. However, due to the increasing design complexity and the lack of efficient algorithms and design automation tools, it is difficult to quickly figure out an optimal task scheduling scheme for an AUTOSAR-based system. To address this problem, we introduce a novel task scheduling method that can parallelly search for an optimal solution with the help of our proposed pruning strategy. Experimental results on a real-world AUTOSAR-based autonomous driving system demonstrate that our approach can achieve much better task scheduling solutions than the ones obtained manually and significantly reduce the overall task scheduling time.</description><subject>Autonomous vehicles</subject><subject>Complexity theory</subject><subject>I. Introduction</subject><subject>Job shop scheduling</subject><subject>Real-time systems</subject><subject>Search problems</subject><subject>Systems architecture</subject><subject>Task analysis</subject><issn>2576-3172</issn><isbn>9798350328578</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjkFPwjAYQKuJiYj8Aw79A5tfW7q23iZBJSFhYePihXx2rVbnIC2L4d-L0dNL3uHlETJlkDMG5m7T1LU0IHnOgYscAKS6IBOjjBYSBNdS6Usy4lIVmWCKX5OblD4AOEjBR-TlIQbn6bJvh3SMJ1rhwcV72uy_MbaJLrwPNrj-SBtMn7S2764dutC_Ub-PtNw267rc0CH9mgojdp3raBWH_ixuyZXHLrnJP8dk-7ho5s_Zav20nJerLDBmjhkvgKtCS26sfnWtLc7XBiybIZMclMZCojAKtbHQanQSPVqwvlAtase1GJPpXzc453aHGL4wnnYMZiANM-IHdMVSyg</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Yang, Yanxing</creator><creator>Zhang, Nan</creator><creator>Yan, Dengke</creator><creator>Wei, Xian</creator><creator>Zhou, Junlong</creator><creator>Liu, Hong</creator><creator>Chen, Mingsong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231205</creationdate><title>Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning</title><author>Yang, Yanxing ; Zhang, Nan ; Yan, Dengke ; Wei, Xian ; Zhou, Junlong ; Liu, Hong ; Chen, Mingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-2602768529c8bedc650390c14a152078a65a397a89c0d8ae5afac0cf67da8e283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomous vehicles</topic><topic>Complexity theory</topic><topic>I. Introduction</topic><topic>Job shop scheduling</topic><topic>Real-time systems</topic><topic>Search problems</topic><topic>Systems architecture</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yanxing</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Yan, Dengke</creatorcontrib><creatorcontrib>Wei, Xian</creatorcontrib><creatorcontrib>Zhou, Junlong</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Chen, Mingsong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yanxing</au><au>Zhang, Nan</au><au>Yan, Dengke</au><au>Wei, Xian</au><au>Zhou, Junlong</au><au>Liu, Hong</au><au>Chen, Mingsong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning</atitle><btitle>2023 IEEE Real-Time Systems Symposium (RTSS)</btitle><stitle>RTSS</stitle><date>2023-12-05</date><risdate>2023</risdate><spage>484</spage><epage>488</epage><pages>484-488</pages><eissn>2576-3172</eissn><eisbn>9798350328578</eisbn><coden>IEEPAD</coden><abstract>As a standardized software framework and open E/E system architecture, the AUTomotive Open System ARchitecture (AUTOSAR) has been widely applied to autonomous driving systems to enable real-time control. However, due to the increasing design complexity and the lack of efficient algorithms and design automation tools, it is difficult to quickly figure out an optimal task scheduling scheme for an AUTOSAR-based system. To address this problem, we introduce a novel task scheduling method that can parallelly search for an optimal solution with the help of our proposed pruning strategy. Experimental results on a real-world AUTOSAR-based autonomous driving system demonstrate that our approach can achieve much better task scheduling solutions than the ones obtained manually and significantly reduce the overall task scheduling time.</abstract><pub>IEEE</pub><doi>10.1109/RTSS59052.2023.00057</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-3172
ispartof 2023 IEEE Real-Time Systems Symposium (RTSS), 2023, p.484-488
issn 2576-3172
language eng
recordid cdi_ieee_primary_10405919
source IEEE Xplore All Conference Series
subjects Autonomous vehicles
Complexity theory
I. Introduction
Job shop scheduling
Real-time systems
Search problems
Systems architecture
Task analysis
title Brief Industry Paper: Towards Efficient Task Scheduling for AUTOSAR using Parallel Pruning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Brief%20Industry%20Paper:%20Towards%20Efficient%20Task%20Scheduling%20for%20AUTOSAR%20using%20Parallel%20Pruning&rft.btitle=2023%20IEEE%20Real-Time%20Systems%20Symposium%20(RTSS)&rft.au=Yang,%20Yanxing&rft.date=2023-12-05&rft.spage=484&rft.epage=488&rft.pages=484-488&rft.eissn=2576-3172&rft.coden=IEEPAD&rft_id=info:doi/10.1109/RTSS59052.2023.00057&rft.eisbn=9798350328578&rft_dat=%3Cieee_CHZPO%3E10405919%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-2602768529c8bedc650390c14a152078a65a397a89c0d8ae5afac0cf67da8e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10405919&rfr_iscdi=true