Loading…
Enhanced Message-Passing Decoding of Degenerate Quantum Codes Utilizing Trapping Set Dynamics
In this letter, we propose a novel iterative decoding algorithm that exploits the degenerate nature of three different families of quantum low-density parity-check codes, i.e., surface, toric, and row-degree-4 bicycle codes. Such families of codes share harmful trapping sets that constitute symmetri...
Saved in:
Published in: | IEEE communications letters 2024-03, Vol.28 (3), p.444-448 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter, we propose a novel iterative decoding algorithm that exploits the degenerate nature of three different families of quantum low-density parity-check codes, i.e., surface, toric, and row-degree-4 bicycle codes. Such families of codes share harmful trapping sets that constitute symmetric stabilizers, making it impossible for any parallel-scheduled iterative message-passing decoder to converge even for error patterns of weight as low as two. By biasing subsets of nodes in the symmetric stabilizers, the decoder is able to converge to a valid error pattern. Furthermore, the proposed decoder has low decoding complexity - linear in the code's blocklength - and a fully parallel schedule, making it suitable for low-latency efficient implementation. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2024.3356312 |