Loading…
Hybrid Wheelchair control method with EEG signal and facial Expression
While degrading their mobility, one of the major concerns of elderly/disabled people is affecting their ability to live independently. Assistive technologies for mobility are now designed to improve people's living conditions. However, improvements are needed to existing mobility assist devices...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 897 |
container_issue | |
container_start_page | 893 |
container_title | |
container_volume | |
creator | Zaway, Lassaad Amor, Nader Ben Jallouli, Mohamed Chrifi-Alaoui, Larbi Delahoche, Laurent |
description | While degrading their mobility, one of the major concerns of elderly/disabled people is affecting their ability to live independently. Assistive technologies for mobility are now designed to improve people's living conditions. However, improvements are needed to existing mobility assist devices. This article explores the design and control of a smart wheelchair with two sources of control to improve wheelchair user safety. To improve user involvement and safety, the proposed system includes control interfaces with the EEG signal processing application using the EMOTIV Insight EEG headset in addition to facial expressions using a webcam, at the same time defining the state of the user. |
doi_str_mv | 10.1109/SSD58187.2023.10411223 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10411223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10411223</ieee_id><sourcerecordid>10411223</sourcerecordid><originalsourceid>FETCH-LOGICAL-h153t-76c238654aa1a1fd82a93b220c444b3bef40e4d8b00a2fc3e624738fe14b39813</originalsourceid><addsrcrecordid>eNo1j8FKw0AURUdBsNT8gcj8QOJ7814mk6XUtBUKLqq4LJNkxoykSUkC2r83YF3dCwcu5wrxgJAgQv643z-nBk2WKFCUIDCiUnQlojzLDaVApFJtrsVCccYxMOtbEY3jFwCgxjRnXoj19lwOoZYfjXNt1dgwyKrvpqFv5dFNTV_L7zA1sig2cgyfnW2l7WrpbRXmWvycBjeOoe_uxI237eiiSy7F-7p4W23j3evmZfW0ixtMaYozXSkyOmVr0aKvjbI5lUpBxcwllc4zOK5NCWCVr8jpWZ2MdzjT3CAtxf3fbnDOHU5DONrhfPi_Tr-VMkys</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Wheelchair control method with EEG signal and facial Expression</title><source>IEEE Xplore All Conference Series</source><creator>Zaway, Lassaad ; Amor, Nader Ben ; Jallouli, Mohamed ; Chrifi-Alaoui, Larbi ; Delahoche, Laurent</creator><creatorcontrib>Zaway, Lassaad ; Amor, Nader Ben ; Jallouli, Mohamed ; Chrifi-Alaoui, Larbi ; Delahoche, Laurent</creatorcontrib><description>While degrading their mobility, one of the major concerns of elderly/disabled people is affecting their ability to live independently. Assistive technologies for mobility are now designed to improve people's living conditions. However, improvements are needed to existing mobility assist devices. This article explores the design and control of a smart wheelchair with two sources of control to improve wheelchair user safety. To improve user involvement and safety, the proposed system includes control interfaces with the EEG signal processing application using the EMOTIV Insight EEG headset in addition to facial expressions using a webcam, at the same time defining the state of the user.</description><identifier>EISSN: 2474-0446</identifier><identifier>EISBN: 9798350332568</identifier><identifier>DOI: 10.1109/SSD58187.2023.10411223</identifier><language>eng</language><publisher>IEEE</publisher><subject>electric-powered wheelchair (EPW) ; Electroencephalogram (EEG) ; Electroencephalography ; facial Expression ; Headphones ; hybrid Wheelchair control ; Mindset EMOTIV Insight ; Planning ; Safety ; Signal processing ; Webcams ; Wheelchairs</subject><ispartof>2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), 2023, p.893-897</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10411223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10411223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Amor, Nader Ben</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi-Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><title>Hybrid Wheelchair control method with EEG signal and facial Expression</title><title>2023 20th International Multi-Conference on Systems, Signals & Devices (SSD)</title><addtitle>SSD</addtitle><description>While degrading their mobility, one of the major concerns of elderly/disabled people is affecting their ability to live independently. Assistive technologies for mobility are now designed to improve people's living conditions. However, improvements are needed to existing mobility assist devices. This article explores the design and control of a smart wheelchair with two sources of control to improve wheelchair user safety. To improve user involvement and safety, the proposed system includes control interfaces with the EEG signal processing application using the EMOTIV Insight EEG headset in addition to facial expressions using a webcam, at the same time defining the state of the user.</description><subject>electric-powered wheelchair (EPW)</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>facial Expression</subject><subject>Headphones</subject><subject>hybrid Wheelchair control</subject><subject>Mindset EMOTIV Insight</subject><subject>Planning</subject><subject>Safety</subject><subject>Signal processing</subject><subject>Webcams</subject><subject>Wheelchairs</subject><issn>2474-0446</issn><isbn>9798350332568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKw0AURUdBsNT8gcj8QOJ7814mk6XUtBUKLqq4LJNkxoykSUkC2r83YF3dCwcu5wrxgJAgQv643z-nBk2WKFCUIDCiUnQlojzLDaVApFJtrsVCccYxMOtbEY3jFwCgxjRnXoj19lwOoZYfjXNt1dgwyKrvpqFv5dFNTV_L7zA1sig2cgyfnW2l7WrpbRXmWvycBjeOoe_uxI237eiiSy7F-7p4W23j3evmZfW0ixtMaYozXSkyOmVr0aKvjbI5lUpBxcwllc4zOK5NCWCVr8jpWZ2MdzjT3CAtxf3fbnDOHU5DONrhfPi_Tr-VMkys</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Zaway, Lassaad</creator><creator>Amor, Nader Ben</creator><creator>Jallouli, Mohamed</creator><creator>Chrifi-Alaoui, Larbi</creator><creator>Delahoche, Laurent</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230220</creationdate><title>Hybrid Wheelchair control method with EEG signal and facial Expression</title><author>Zaway, Lassaad ; Amor, Nader Ben ; Jallouli, Mohamed ; Chrifi-Alaoui, Larbi ; Delahoche, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h153t-76c238654aa1a1fd82a93b220c444b3bef40e4d8b00a2fc3e624738fe14b39813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>electric-powered wheelchair (EPW)</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>facial Expression</topic><topic>Headphones</topic><topic>hybrid Wheelchair control</topic><topic>Mindset EMOTIV Insight</topic><topic>Planning</topic><topic>Safety</topic><topic>Signal processing</topic><topic>Webcams</topic><topic>Wheelchairs</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Amor, Nader Ben</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi-Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaway, Lassaad</au><au>Amor, Nader Ben</au><au>Jallouli, Mohamed</au><au>Chrifi-Alaoui, Larbi</au><au>Delahoche, Laurent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Wheelchair control method with EEG signal and facial Expression</atitle><btitle>2023 20th International Multi-Conference on Systems, Signals & Devices (SSD)</btitle><stitle>SSD</stitle><date>2023-02-20</date><risdate>2023</risdate><spage>893</spage><epage>897</epage><pages>893-897</pages><eissn>2474-0446</eissn><eisbn>9798350332568</eisbn><abstract>While degrading their mobility, one of the major concerns of elderly/disabled people is affecting their ability to live independently. Assistive technologies for mobility are now designed to improve people's living conditions. However, improvements are needed to existing mobility assist devices. This article explores the design and control of a smart wheelchair with two sources of control to improve wheelchair user safety. To improve user involvement and safety, the proposed system includes control interfaces with the EEG signal processing application using the EMOTIV Insight EEG headset in addition to facial expressions using a webcam, at the same time defining the state of the user.</abstract><pub>IEEE</pub><doi>10.1109/SSD58187.2023.10411223</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2474-0446 |
ispartof | 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), 2023, p.893-897 |
issn | 2474-0446 |
language | eng |
recordid | cdi_ieee_primary_10411223 |
source | IEEE Xplore All Conference Series |
subjects | electric-powered wheelchair (EPW) Electroencephalogram (EEG) Electroencephalography facial Expression Headphones hybrid Wheelchair control Mindset EMOTIV Insight Planning Safety Signal processing Webcams Wheelchairs |
title | Hybrid Wheelchair control method with EEG signal and facial Expression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Wheelchair%20control%20method%20with%20EEG%20signal%20and%20facial%20Expression&rft.btitle=2023%2020th%20International%20Multi-Conference%20on%20Systems,%20Signals%20&%20Devices%20(SSD)&rft.au=Zaway,%20Lassaad&rft.date=2023-02-20&rft.spage=893&rft.epage=897&rft.pages=893-897&rft.eissn=2474-0446&rft_id=info:doi/10.1109/SSD58187.2023.10411223&rft.eisbn=9798350332568&rft_dat=%3Cieee_CHZPO%3E10411223%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h153t-76c238654aa1a1fd82a93b220c444b3bef40e4d8b00a2fc3e624738fe14b39813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10411223&rfr_iscdi=true |