Loading…

High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling

Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are expe...

Full description

Saved in:
Bibliographic Details
Main Authors: Penumatcha, A., O'Brien, K. P., Maxey, K., Mortelmans, W., Steinhardt, R., Dutta, S., Dorow, C. J., Naylor A., C. H., Kitamura, Kitamura, Zhong, T., Tronic, T., Buragohain, P., Rogan, C., Lin, C-C., Kavrik, M., Lux, J., Oni, A., Vyatskikh, A., Lee, S., Arefin, N., Fischer, P., Clenndenning, S., Radosavljevic, M., Metz, M., Avci, U.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Penumatcha, A.
O'Brien, K. P.
Maxey, K.
Mortelmans, W.
Steinhardt, R.
Dutta, S.
Dorow, C. J.
Naylor A., C. H.
Kitamura, Kitamura
Zhong, T.
Tronic, T.
Buragohain, P.
Rogan, C.
Lin, C-C.
Kavrik, M.
Lux, J.
Oni, A.
Vyatskikh, A.
Lee, S.
Arefin, N.
Fischer, P.
Clenndenning, S.
Radosavljevic, M.
Metz, M.
Avci, U.
description Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.
doi_str_mv 10.1109/IEDM45741.2023.10413662
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10413662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10413662</ieee_id><sourcerecordid>10413662</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-4f3e923208d1c77d77575d19ad0fefa402b140359c901103bc2764c9f0ce33333</originalsourceid><addsrcrecordid>eNo1UNtqAjEUTAuFWusfFJofWHtOLhvzuKxWBbcWVCh9kWw2qylbLdn44N937eW8zDAww8wh5BFhiAj6aT4ZF0IqgUMGjA8RBPI0ZVdkoJUecQmcqVTBNekxlGkCqN5uyV3bfgAwJbXskfeZ3-1pcSx94-OZrosxfSmWK2oOFX29kHUwh9a38RjaH3GaZTQLdu-js_EUHK2PgW6a6D9NdDS_WFbWNP6wuyc3tWlaN_jDPtk8T9b5LFksp_M8WyQeUcdE1NxpxhmMKrRKVUpJJSvUpoLa1UYAK1EAl9pq6Ebz0nabhNU1WMcv1ycPv7neObf9Cl2TcN7-_4J_A_R_UTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</title><source>IEEE Xplore All Conference Series</source><creator>Penumatcha, A. ; O'Brien, K. P. ; Maxey, K. ; Mortelmans, W. ; Steinhardt, R. ; Dutta, S. ; Dorow, C. J. ; Naylor A., C. H. ; Kitamura, Kitamura ; Zhong, T. ; Tronic, T. ; Buragohain, P. ; Rogan, C. ; Lin, C-C. ; Kavrik, M. ; Lux, J. ; Oni, A. ; Vyatskikh, A. ; Lee, S. ; Arefin, N. ; Fischer, P. ; Clenndenning, S. ; Radosavljevic, M. ; Metz, M. ; Avci, U.</creator><creatorcontrib>Penumatcha, A. ; O'Brien, K. P. ; Maxey, K. ; Mortelmans, W. ; Steinhardt, R. ; Dutta, S. ; Dorow, C. J. ; Naylor A., C. H. ; Kitamura, Kitamura ; Zhong, T. ; Tronic, T. ; Buragohain, P. ; Rogan, C. ; Lin, C-C. ; Kavrik, M. ; Lux, J. ; Oni, A. ; Vyatskikh, A. ; Lee, S. ; Arefin, N. ; Fischer, P. ; Clenndenning, S. ; Radosavljevic, M. ; Metz, M. ; Avci, U.</creatorcontrib><description>Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.</description><identifier>EISSN: 2156-017X</identifier><identifier>EISBN: 9798350327670</identifier><identifier>DOI: 10.1109/IEDM45741.2023.10413662</identifier><language>eng</language><publisher>IEEE</publisher><subject>Doping ; Gallium arsenide ; Hafnium compounds ; Logic gates ; Resistance ; Silicon ; Transistors</subject><ispartof>2023 International Electron Devices Meeting (IEDM), 2023, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10413662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10413662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Penumatcha, A.</creatorcontrib><creatorcontrib>O'Brien, K. P.</creatorcontrib><creatorcontrib>Maxey, K.</creatorcontrib><creatorcontrib>Mortelmans, W.</creatorcontrib><creatorcontrib>Steinhardt, R.</creatorcontrib><creatorcontrib>Dutta, S.</creatorcontrib><creatorcontrib>Dorow, C. J.</creatorcontrib><creatorcontrib>Naylor A., C. H.</creatorcontrib><creatorcontrib>Kitamura, Kitamura</creatorcontrib><creatorcontrib>Zhong, T.</creatorcontrib><creatorcontrib>Tronic, T.</creatorcontrib><creatorcontrib>Buragohain, P.</creatorcontrib><creatorcontrib>Rogan, C.</creatorcontrib><creatorcontrib>Lin, C-C.</creatorcontrib><creatorcontrib>Kavrik, M.</creatorcontrib><creatorcontrib>Lux, J.</creatorcontrib><creatorcontrib>Oni, A.</creatorcontrib><creatorcontrib>Vyatskikh, A.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Arefin, N.</creatorcontrib><creatorcontrib>Fischer, P.</creatorcontrib><creatorcontrib>Clenndenning, S.</creatorcontrib><creatorcontrib>Radosavljevic, M.</creatorcontrib><creatorcontrib>Metz, M.</creatorcontrib><creatorcontrib>Avci, U.</creatorcontrib><title>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</title><title>2023 International Electron Devices Meeting (IEDM)</title><addtitle>IEDM</addtitle><description>Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.</description><subject>Doping</subject><subject>Gallium arsenide</subject><subject>Hafnium compounds</subject><subject>Logic gates</subject><subject>Resistance</subject><subject>Silicon</subject><subject>Transistors</subject><issn>2156-017X</issn><isbn>9798350327670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtqAjEUTAuFWusfFJofWHtOLhvzuKxWBbcWVCh9kWw2qylbLdn44N937eW8zDAww8wh5BFhiAj6aT4ZF0IqgUMGjA8RBPI0ZVdkoJUecQmcqVTBNekxlGkCqN5uyV3bfgAwJbXskfeZ3-1pcSx94-OZrosxfSmWK2oOFX29kHUwh9a38RjaH3GaZTQLdu-js_EUHK2PgW6a6D9NdDS_WFbWNP6wuyc3tWlaN_jDPtk8T9b5LFksp_M8WyQeUcdE1NxpxhmMKrRKVUpJJSvUpoLa1UYAK1EAl9pq6Ebz0nabhNU1WMcv1ycPv7neObf9Cl2TcN7-_4J_A_R_UTw</recordid><startdate>20231209</startdate><enddate>20231209</enddate><creator>Penumatcha, A.</creator><creator>O'Brien, K. P.</creator><creator>Maxey, K.</creator><creator>Mortelmans, W.</creator><creator>Steinhardt, R.</creator><creator>Dutta, S.</creator><creator>Dorow, C. J.</creator><creator>Naylor A., C. H.</creator><creator>Kitamura, Kitamura</creator><creator>Zhong, T.</creator><creator>Tronic, T.</creator><creator>Buragohain, P.</creator><creator>Rogan, C.</creator><creator>Lin, C-C.</creator><creator>Kavrik, M.</creator><creator>Lux, J.</creator><creator>Oni, A.</creator><creator>Vyatskikh, A.</creator><creator>Lee, S.</creator><creator>Arefin, N.</creator><creator>Fischer, P.</creator><creator>Clenndenning, S.</creator><creator>Radosavljevic, M.</creator><creator>Metz, M.</creator><creator>Avci, U.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231209</creationdate><title>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</title><author>Penumatcha, A. ; O'Brien, K. P. ; Maxey, K. ; Mortelmans, W. ; Steinhardt, R. ; Dutta, S. ; Dorow, C. J. ; Naylor A., C. H. ; Kitamura, Kitamura ; Zhong, T. ; Tronic, T. ; Buragohain, P. ; Rogan, C. ; Lin, C-C. ; Kavrik, M. ; Lux, J. ; Oni, A. ; Vyatskikh, A. ; Lee, S. ; Arefin, N. ; Fischer, P. ; Clenndenning, S. ; Radosavljevic, M. ; Metz, M. ; Avci, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-4f3e923208d1c77d77575d19ad0fefa402b140359c901103bc2764c9f0ce33333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Doping</topic><topic>Gallium arsenide</topic><topic>Hafnium compounds</topic><topic>Logic gates</topic><topic>Resistance</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Penumatcha, A.</creatorcontrib><creatorcontrib>O'Brien, K. P.</creatorcontrib><creatorcontrib>Maxey, K.</creatorcontrib><creatorcontrib>Mortelmans, W.</creatorcontrib><creatorcontrib>Steinhardt, R.</creatorcontrib><creatorcontrib>Dutta, S.</creatorcontrib><creatorcontrib>Dorow, C. J.</creatorcontrib><creatorcontrib>Naylor A., C. H.</creatorcontrib><creatorcontrib>Kitamura, Kitamura</creatorcontrib><creatorcontrib>Zhong, T.</creatorcontrib><creatorcontrib>Tronic, T.</creatorcontrib><creatorcontrib>Buragohain, P.</creatorcontrib><creatorcontrib>Rogan, C.</creatorcontrib><creatorcontrib>Lin, C-C.</creatorcontrib><creatorcontrib>Kavrik, M.</creatorcontrib><creatorcontrib>Lux, J.</creatorcontrib><creatorcontrib>Oni, A.</creatorcontrib><creatorcontrib>Vyatskikh, A.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Arefin, N.</creatorcontrib><creatorcontrib>Fischer, P.</creatorcontrib><creatorcontrib>Clenndenning, S.</creatorcontrib><creatorcontrib>Radosavljevic, M.</creatorcontrib><creatorcontrib>Metz, M.</creatorcontrib><creatorcontrib>Avci, U.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Penumatcha, A.</au><au>O'Brien, K. P.</au><au>Maxey, K.</au><au>Mortelmans, W.</au><au>Steinhardt, R.</au><au>Dutta, S.</au><au>Dorow, C. J.</au><au>Naylor A., C. H.</au><au>Kitamura, Kitamura</au><au>Zhong, T.</au><au>Tronic, T.</au><au>Buragohain, P.</au><au>Rogan, C.</au><au>Lin, C-C.</au><au>Kavrik, M.</au><au>Lux, J.</au><au>Oni, A.</au><au>Vyatskikh, A.</au><au>Lee, S.</au><au>Arefin, N.</au><au>Fischer, P.</au><au>Clenndenning, S.</au><au>Radosavljevic, M.</au><au>Metz, M.</au><au>Avci, U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</atitle><btitle>2023 International Electron Devices Meeting (IEDM)</btitle><stitle>IEDM</stitle><date>2023-12-09</date><risdate>2023</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2156-017X</eissn><eisbn>9798350327670</eisbn><abstract>Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.</abstract><pub>IEEE</pub><doi>10.1109/IEDM45741.2023.10413662</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2156-017X
ispartof 2023 International Electron Devices Meeting (IEDM), 2023, p.1-4
issn 2156-017X
language eng
recordid cdi_ieee_primary_10413662
source IEEE Xplore All Conference Series
subjects Doping
Gallium arsenide
Hafnium compounds
Logic gates
Resistance
Silicon
Transistors
title High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20Mobility%20TMD%20NMOS%20and%20PMOS%20Transistors%20and%20GAA%20Architecture%20for%20Ultimate%20CMOS%20Scaling&rft.btitle=2023%20International%20Electron%20Devices%20Meeting%20(IEDM)&rft.au=Penumatcha,%20A.&rft.date=2023-12-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2156-017X&rft_id=info:doi/10.1109/IEDM45741.2023.10413662&rft.eisbn=9798350327670&rft_dat=%3Cieee_CHZPO%3E10413662%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-4f3e923208d1c77d77575d19ad0fefa402b140359c901103bc2764c9f0ce33333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10413662&rfr_iscdi=true