Loading…
High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling
Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are expe...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Penumatcha, A. O'Brien, K. P. Maxey, K. Mortelmans, W. Steinhardt, R. Dutta, S. Dorow, C. J. Naylor A., C. H. Kitamura, Kitamura Zhong, T. Tronic, T. Buragohain, P. Rogan, C. Lin, C-C. Kavrik, M. Lux, J. Oni, A. Vyatskikh, A. Lee, S. Arefin, N. Fischer, P. Clenndenning, S. Radosavljevic, M. Metz, M. Avci, U. |
description | Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon. |
doi_str_mv | 10.1109/IEDM45741.2023.10413662 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10413662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10413662</ieee_id><sourcerecordid>10413662</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-4f3e923208d1c77d77575d19ad0fefa402b140359c901103bc2764c9f0ce33333</originalsourceid><addsrcrecordid>eNo1UNtqAjEUTAuFWusfFJofWHtOLhvzuKxWBbcWVCh9kWw2qylbLdn44N937eW8zDAww8wh5BFhiAj6aT4ZF0IqgUMGjA8RBPI0ZVdkoJUecQmcqVTBNekxlGkCqN5uyV3bfgAwJbXskfeZ3-1pcSx94-OZrosxfSmWK2oOFX29kHUwh9a38RjaH3GaZTQLdu-js_EUHK2PgW6a6D9NdDS_WFbWNP6wuyc3tWlaN_jDPtk8T9b5LFksp_M8WyQeUcdE1NxpxhmMKrRKVUpJJSvUpoLa1UYAK1EAl9pq6Ebz0nabhNU1WMcv1ycPv7neObf9Cl2TcN7-_4J_A_R_UTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</title><source>IEEE Xplore All Conference Series</source><creator>Penumatcha, A. ; O'Brien, K. P. ; Maxey, K. ; Mortelmans, W. ; Steinhardt, R. ; Dutta, S. ; Dorow, C. J. ; Naylor A., C. H. ; Kitamura, Kitamura ; Zhong, T. ; Tronic, T. ; Buragohain, P. ; Rogan, C. ; Lin, C-C. ; Kavrik, M. ; Lux, J. ; Oni, A. ; Vyatskikh, A. ; Lee, S. ; Arefin, N. ; Fischer, P. ; Clenndenning, S. ; Radosavljevic, M. ; Metz, M. ; Avci, U.</creator><creatorcontrib>Penumatcha, A. ; O'Brien, K. P. ; Maxey, K. ; Mortelmans, W. ; Steinhardt, R. ; Dutta, S. ; Dorow, C. J. ; Naylor A., C. H. ; Kitamura, Kitamura ; Zhong, T. ; Tronic, T. ; Buragohain, P. ; Rogan, C. ; Lin, C-C. ; Kavrik, M. ; Lux, J. ; Oni, A. ; Vyatskikh, A. ; Lee, S. ; Arefin, N. ; Fischer, P. ; Clenndenning, S. ; Radosavljevic, M. ; Metz, M. ; Avci, U.</creatorcontrib><description>Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.</description><identifier>EISSN: 2156-017X</identifier><identifier>EISBN: 9798350327670</identifier><identifier>DOI: 10.1109/IEDM45741.2023.10413662</identifier><language>eng</language><publisher>IEEE</publisher><subject>Doping ; Gallium arsenide ; Hafnium compounds ; Logic gates ; Resistance ; Silicon ; Transistors</subject><ispartof>2023 International Electron Devices Meeting (IEDM), 2023, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10413662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10413662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Penumatcha, A.</creatorcontrib><creatorcontrib>O'Brien, K. P.</creatorcontrib><creatorcontrib>Maxey, K.</creatorcontrib><creatorcontrib>Mortelmans, W.</creatorcontrib><creatorcontrib>Steinhardt, R.</creatorcontrib><creatorcontrib>Dutta, S.</creatorcontrib><creatorcontrib>Dorow, C. J.</creatorcontrib><creatorcontrib>Naylor A., C. H.</creatorcontrib><creatorcontrib>Kitamura, Kitamura</creatorcontrib><creatorcontrib>Zhong, T.</creatorcontrib><creatorcontrib>Tronic, T.</creatorcontrib><creatorcontrib>Buragohain, P.</creatorcontrib><creatorcontrib>Rogan, C.</creatorcontrib><creatorcontrib>Lin, C-C.</creatorcontrib><creatorcontrib>Kavrik, M.</creatorcontrib><creatorcontrib>Lux, J.</creatorcontrib><creatorcontrib>Oni, A.</creatorcontrib><creatorcontrib>Vyatskikh, A.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Arefin, N.</creatorcontrib><creatorcontrib>Fischer, P.</creatorcontrib><creatorcontrib>Clenndenning, S.</creatorcontrib><creatorcontrib>Radosavljevic, M.</creatorcontrib><creatorcontrib>Metz, M.</creatorcontrib><creatorcontrib>Avci, U.</creatorcontrib><title>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</title><title>2023 International Electron Devices Meeting (IEDM)</title><addtitle>IEDM</addtitle><description>Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.</description><subject>Doping</subject><subject>Gallium arsenide</subject><subject>Hafnium compounds</subject><subject>Logic gates</subject><subject>Resistance</subject><subject>Silicon</subject><subject>Transistors</subject><issn>2156-017X</issn><isbn>9798350327670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtqAjEUTAuFWusfFJofWHtOLhvzuKxWBbcWVCh9kWw2qylbLdn44N937eW8zDAww8wh5BFhiAj6aT4ZF0IqgUMGjA8RBPI0ZVdkoJUecQmcqVTBNekxlGkCqN5uyV3bfgAwJbXskfeZ3-1pcSx94-OZrosxfSmWK2oOFX29kHUwh9a38RjaH3GaZTQLdu-js_EUHK2PgW6a6D9NdDS_WFbWNP6wuyc3tWlaN_jDPtk8T9b5LFksp_M8WyQeUcdE1NxpxhmMKrRKVUpJJSvUpoLa1UYAK1EAl9pq6Ebz0nabhNU1WMcv1ycPv7neObf9Cl2TcN7-_4J_A_R_UTw</recordid><startdate>20231209</startdate><enddate>20231209</enddate><creator>Penumatcha, A.</creator><creator>O'Brien, K. P.</creator><creator>Maxey, K.</creator><creator>Mortelmans, W.</creator><creator>Steinhardt, R.</creator><creator>Dutta, S.</creator><creator>Dorow, C. J.</creator><creator>Naylor A., C. H.</creator><creator>Kitamura, Kitamura</creator><creator>Zhong, T.</creator><creator>Tronic, T.</creator><creator>Buragohain, P.</creator><creator>Rogan, C.</creator><creator>Lin, C-C.</creator><creator>Kavrik, M.</creator><creator>Lux, J.</creator><creator>Oni, A.</creator><creator>Vyatskikh, A.</creator><creator>Lee, S.</creator><creator>Arefin, N.</creator><creator>Fischer, P.</creator><creator>Clenndenning, S.</creator><creator>Radosavljevic, M.</creator><creator>Metz, M.</creator><creator>Avci, U.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231209</creationdate><title>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</title><author>Penumatcha, A. ; O'Brien, K. P. ; Maxey, K. ; Mortelmans, W. ; Steinhardt, R. ; Dutta, S. ; Dorow, C. J. ; Naylor A., C. H. ; Kitamura, Kitamura ; Zhong, T. ; Tronic, T. ; Buragohain, P. ; Rogan, C. ; Lin, C-C. ; Kavrik, M. ; Lux, J. ; Oni, A. ; Vyatskikh, A. ; Lee, S. ; Arefin, N. ; Fischer, P. ; Clenndenning, S. ; Radosavljevic, M. ; Metz, M. ; Avci, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-4f3e923208d1c77d77575d19ad0fefa402b140359c901103bc2764c9f0ce33333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Doping</topic><topic>Gallium arsenide</topic><topic>Hafnium compounds</topic><topic>Logic gates</topic><topic>Resistance</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Penumatcha, A.</creatorcontrib><creatorcontrib>O'Brien, K. P.</creatorcontrib><creatorcontrib>Maxey, K.</creatorcontrib><creatorcontrib>Mortelmans, W.</creatorcontrib><creatorcontrib>Steinhardt, R.</creatorcontrib><creatorcontrib>Dutta, S.</creatorcontrib><creatorcontrib>Dorow, C. J.</creatorcontrib><creatorcontrib>Naylor A., C. H.</creatorcontrib><creatorcontrib>Kitamura, Kitamura</creatorcontrib><creatorcontrib>Zhong, T.</creatorcontrib><creatorcontrib>Tronic, T.</creatorcontrib><creatorcontrib>Buragohain, P.</creatorcontrib><creatorcontrib>Rogan, C.</creatorcontrib><creatorcontrib>Lin, C-C.</creatorcontrib><creatorcontrib>Kavrik, M.</creatorcontrib><creatorcontrib>Lux, J.</creatorcontrib><creatorcontrib>Oni, A.</creatorcontrib><creatorcontrib>Vyatskikh, A.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Arefin, N.</creatorcontrib><creatorcontrib>Fischer, P.</creatorcontrib><creatorcontrib>Clenndenning, S.</creatorcontrib><creatorcontrib>Radosavljevic, M.</creatorcontrib><creatorcontrib>Metz, M.</creatorcontrib><creatorcontrib>Avci, U.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Penumatcha, A.</au><au>O'Brien, K. P.</au><au>Maxey, K.</au><au>Mortelmans, W.</au><au>Steinhardt, R.</au><au>Dutta, S.</au><au>Dorow, C. J.</au><au>Naylor A., C. H.</au><au>Kitamura, Kitamura</au><au>Zhong, T.</au><au>Tronic, T.</au><au>Buragohain, P.</au><au>Rogan, C.</au><au>Lin, C-C.</au><au>Kavrik, M.</au><au>Lux, J.</au><au>Oni, A.</au><au>Vyatskikh, A.</au><au>Lee, S.</au><au>Arefin, N.</au><au>Fischer, P.</au><au>Clenndenning, S.</au><au>Radosavljevic, M.</au><au>Metz, M.</au><au>Avci, U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling</atitle><btitle>2023 International Electron Devices Meeting (IEDM)</btitle><stitle>IEDM</stitle><date>2023-12-09</date><risdate>2023</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2156-017X</eissn><eisbn>9798350327670</eisbn><abstract>Transition metal dichalcogenide [TMD] 2D channel materials offer a unique opportunity for scaled transistor gate lengths below 10 nm to enable ultra-scaled polypitch. The significant scaling advantage of 2D materials is due to their high mobility values at sub-1 nm thickness, which thus far are experimentally reported to be lower than predicted. In this work, we present high-mobility 2D TMD NMOS and PMOS transistors using M0S2 and WSe 2 . A high-temperature MOCVD growth process achieves a hole mobility of 50 cm 2 /Vs, with PMOS ON-current of 247 μA/pm. We also report high-mobility M0S 2 NMOS with mobilities up to 45 cm 2 /Vs, along with the first reported TMD PMOS Gate-All -Around [GAA] transistor with SSlin~107mV/dec. Finally, we compare critically today's 2D transistors to reference silicon transistors and discuss improvements needed to realize TMD's potential as a replacement for Front-End-Of-Line (FEOL) silicon.</abstract><pub>IEEE</pub><doi>10.1109/IEDM45741.2023.10413662</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2156-017X |
ispartof | 2023 International Electron Devices Meeting (IEDM), 2023, p.1-4 |
issn | 2156-017X |
language | eng |
recordid | cdi_ieee_primary_10413662 |
source | IEEE Xplore All Conference Series |
subjects | Doping Gallium arsenide Hafnium compounds Logic gates Resistance Silicon Transistors |
title | High Mobility TMD NMOS and PMOS Transistors and GAA Architecture for Ultimate CMOS Scaling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20Mobility%20TMD%20NMOS%20and%20PMOS%20Transistors%20and%20GAA%20Architecture%20for%20Ultimate%20CMOS%20Scaling&rft.btitle=2023%20International%20Electron%20Devices%20Meeting%20(IEDM)&rft.au=Penumatcha,%20A.&rft.date=2023-12-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2156-017X&rft_id=info:doi/10.1109/IEDM45741.2023.10413662&rft.eisbn=9798350327670&rft_dat=%3Cieee_CHZPO%3E10413662%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-4f3e923208d1c77d77575d19ad0fefa402b140359c901103bc2764c9f0ce33333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10413662&rfr_iscdi=true |